PG-Curriculum (Structure and Course Contents) M.Tech- Electrical Engineering

With effect from July 2018

Electrical Engineering Punjab Engineering College (Deemed to be University)

Chandigarh

S. No.	Course Stream	Page no.
1.	PG Curriculum Structure	1-5
Power	Systems	
Semeste	<u>r</u> 1	
2.	Soft Computing	9-12
3.	Design of Experiments and Research Methodology	14-15
4.	Program Core-I &II	17-23
5.	Program Elective- E1 & E2	25-37
6.	Engineering Mathematics	39-41
Semeste	r 2	
7.	Soft Skills & Management	44-50
8.	Program Core-III&IV	52-59
9.	Program Elective –E3 & E4	61-73
Power	· Electronics	
Semeste	r 1	
10.	Soft Computing	77-80
11.	Design of Experiments and Research Methodology	82-83
12.	Program Core-I &II	85-90
13.	Program Elective- E1 & E2	92-99
14.	Engineering Mathematics	101-103
Semeste	r 2	
15.	Soft Skills & Management	106-112
16.	Program Core-III&IV	114-117
17.	Program Elective –E3 & E4	119-126
Contr	ol Systems	
Semeste	r 1	
18.	Soft Computing	130-133
19.	Design of Experiments and Research Methodology	135-136
20.	Program Core-I &II	138-142
21.	Program Elective- E1 & E2	144-156
22.	Engineering Mathematics	158-160
Semeste	r 2	
23.	Soft Skills & Management	163-169
24.	Program Core-III&IV	171-195
25.	Program Elective –E3 & E4	177-185
Open 1	Electives	187-198

Index

M.Tech in Electrical Engineering (Specialization : Power Systems)

Sr. No	Course Stream	Course Code	Course Name		Course Name Segment Course Name (each section of 0.5 Cr contact hour							Credits	
				1	2	3	4	5	6				
			Semester I										
1.	Soft	SCM5011	Internet of Things							1.5			
	Computing	SCM5012	Machine Learning							1.5			
2	Design of Experiments and Research Methodology	DRM5011	Design of Experiments & Research Methodology(DE)			, 				3			
2.	Program Core-I	EEM5011	Modern Control System					3					
3.	Program	EEM5021	Advance Power System Analysis							2			
	Core-II	EEM5022	Emerging Trends in Power Industries							1			
4.	Program Elective-I : E1	EEM5101 EEM5102 EEM5103	 EHVAC & HVDC transmission system Renewable energy system Power conditioning 							1.5			
	Program Elective-II : E2	EEM5201 EEM5202 EEM5203	 Modern Power System Protection Power system planning Power System Operation & Control 							1.5			
5.	Engineering Mathematics	EMM5011	EM1: Fourier Transforms							1			
	(EM)	EMM5013	EM2: Numerical Methods							1			
		EMM5012	EM3: Optimization Techniques and Genetic Algorithms							1			
			Total Credits	•		·	•			18			

Sr. No.	Course Stream	Course Code	Course Name	Segment {Fractal system (each section of 0.5 Credits and 7 contact hours)}		nd 7	Credits			
				1	2	3	4	5	6	
			Semester II		1			1	1	
1.	Soft skills &	SSM5021	Communication Skills (CS)							1.5
	Management	SSM5022	Management and Entrepreneurship (M) / IPR							1
		SSM5023	Professional Ethics(PE)							0.5
2.	Program	EEM5031	Smart Grid Technologies							
	Core-III	EEM5032								1.5
			Advance Measurement & Control							1.5
3.	Program Core - IV	EEM5041	Power System Modeling and Dynamics							3
4.	Program Elective – III, E3	EEM5301 EEM5302 EEM5303	 Static reactive power control and FACTS Fast transients in power system Microcontroller & PLC 							1.5
	Program Elective – IV, E4	EEM5401 EEM5402 EEM5403	 Power system reliability Restructured and deregulated power system Energy management & energy auditing 							1.5
5.	Open Elective	EEO5002 EEO5003	Digital Signal Processing and ApplicationsPLC & Automation							1.5
		EEO5004 EEO5005	 Intelligent control Supervisory Control and Data Acquisition (SCADA) systems 							1.5
6.	Mini Project / Pre Dissertation	EEP5001								3
	1	1	Total Credits							18

M.Tech in Electrical Engineering (Specialization :Power Electronics)

Sr. No	Course Stream	Course Code	Course Name		ch sec	Seg Fract tion of contac	gment al syste 0.5 Cr t hours	em edits an s)}	nd 7	Credits
					2	3	4	5	6	
			Semester I	-						
1.	Soft	SCM5011	Internet of Things							1.5
	Computing	SCM5012	Machine Learning							1.5
2.	Design of Experiments and Research Methodology	DRM5011	Design of Experiments & Research Methodology(DE)							3
3.	Program Core- I	EEM5011	Modern Control Systems			3				
4.	Program Core- II	EEM5023	1. Power Electronic Devices and Controllers							3
5.	Program Elective-I : E1	EEM5111 EEM5112 EEM5103	 DC Controllers AC Controllers Power Conditioning 							1.5
	Program Elective-II : E2	EEM5211	1. Power Electronics Applications in Power System							1.5
6.	Engineering	EMM5011	EM1: Fourier Transforms							1
	Mathematics (EM)	EMM5013	EM2: Numerical Methods							1
		EMM5012	EM3: Optimization Techniques - II							1
			Total Credits							18

Sr. No.	Course Stream	Course Code	Course Name	(eac	ch sec	Seg Fracta tion of contac	gment al syste 0.5 Cr t hours	em redits a s)}	nd 7	Credits
			Semi-ster H	1	2	3	4	5	6	
1	Soft skills &	SSM5021	Semester II		1		с на 1		1	1.5
1.	Management	SSIV15021	Management and Entergrammelia (A) / IDD						_	1.5
	Wanagement	SSM5022	anagement and Entrepreneurship (M) / IPR			1				
	D	SSM5023	Professional Ethics(PE)							0.5
2.	Program Core-III	EEM5033	Power Electronics Controlled Electric Drive							3
3.	Program Core - IV	EEM5042	Control Techniques in Power Electronics							3
4.	Program Elective – III, E3	EEM5311 EEM5312 EEM5313	 Smart Grid Technologies Advanced Electric Drives Advanced DC/AC Converters 							1.5
	Program Elective – IV, E4	EEM5411 EEM5412	 Advanced DC/DC Converters Advanced Control in Power Electronics & Drives 							1.5
5.	Open Elective	EEO5002 EEO5003	 Digital Signal Processing and Applications PLC & Automation 							1.5
		EEO5004 EEO5005	 Intelligent control Supervisory Control and Data Acquisition (SCADA) systems 							1.5
6.	Mini Project/ Pre Dissertation	EEP5001								3
			Total Credits	•						18

M.Tech in Electrical Engineering (Specialization : Control Systems)

Sr. No	Course Stream	Course Code	Course Name		ch sec	Seg Fract tion of contac	gment al syste 0.5 Cr t hours	m edits ar ;)}	nd 7	Credits
				1	2	3	4	5	6	
			Semester I							
1.	Soft	SCM5011	Internet of Things							1.5
	Computing	SCM5012	Machine Learning							1.5
2.	Design of Experiments and Research Methodology	DRM5011	Design of Experiments & Research Methodology(DE)							3
3.	Program Core- I	EEM5011	Modern Control Systems							3
4.	Program Core II	EEM5024	Linear Optimal Control							3
5.	Program Elective-I : E1	EEM5121 EEM5122 EEM5123	 Neural Network Based Control Introduction to Adaptive Control System Dynamics 							1.5
	Program Elective-II : E2	EEM5221 EEM5222 EEM5223	 Fuzzy Logic Based Control Advanced Techniquesin Adaptive Control Applications of System Dynamics 							1.5
6.	Engineering	EMM5011	EM1: Fourier Transform							1
	Mathematics (EM)	EMM5013	EM2: Numerical Methods							1
		EMM5012	EM3: Optimization Techniques – II							1
			Total Credits							18

Sr. No.	Course Stream	Course Code	Course Name	(ea	ch sec	Seg Fracta tion of contac	gment al syste 70.5 Cr 1t hours	em redits a s)}	nd 7	Credits
				1	2	3	4	5	6	
		1	Semester II		-			-	_	0
1.	Soft skills &	SSM5021	Communication Skills (CS)							1.5
	Management	SSM5022	Management and Entrepreneurship (M) / IPR							1
		SSM5023	Professional Ethics(PE)							0.5
2.	Program Core-III	EEM5034	Discrete Time Control Systems							3
3.	Program Core – IV	EEM5043	Non-linear Control Systems							3
4.	Program Elective – III, E3	EEM5321 EEM5322	 Introduction to Robust control Introduction to System modeling & Identification 							1.5
	Program Elective – IV, E4	EEM5421 EEM5422	 Advanced techniques in System Identification H∞ Control 							1.5
5.	Open Elective	EEO5002 EEO5003	Digital Signal Processing and ApplicationsPLC &Automation							1.5
		EEO5004 EEO5005	 Intelligent control Supervisory Control & Data Acquisition (SCADA) systems 							1.5
6.	Mini Project / Pre Dissertation	EEP5001								3
		•	Total Credits							18

Summer Term *

Sr. no.	Course Code	Course Name	Credits
1		Industrial Visit(3 days to 1 week of visit, Submission and presentation of visit report)	Satisfactory/ Non- satisfactory

*After Examination of second semester, in the first week of summer vacation industry visit can be undertaken.

Course No.	Course Name	Credits	When it runs in a semester				a		
1.01			1 2 3 4 5 6				6		
		Semester-III						•	
1.	Dissertation/Industry Project	14							

Course	Course Name	Credits	When it runs in a
No.			semester
			1 2 3 4 5 6
		Semester-IV	
1.	Dissertation/Industry Project	18	

<u>Total credits – 68</u>

- 20% courses/ semester can be offered in blended mode MOOC's/Industry.
- MOOC's/Industry offered course is having fractional credits. Industry offering course content will be designed by industry will be as per expert availability. Industry person will deliver and evaluate this subject. As per the duration of MOOC's/industry offered course, credits of this course can be decided (fractional credits).

Power Systems

Semester 1

Soft Computing

Course Name	:	Internet of Things
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	1-3

Total no. of lectures: 14 Total no. of Lab hrs. : 14

Course Objectives:

The ma	The main objectives of this course are:					
1.	Understand core technology, applications, sensors used and IOT architecture along with					
	the industry perspective.					
2.	Principles and operations of different types of sensors commonly used on mobile platform					
	will be taught in a manner that by the end of the course the students will be able to design					
	and implement real time solutions using IOT.					

Course Contents:

S.No.	Course Contents	No. of
		Lectures
1	What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Market	2
	Solution Architecture Models, Major 101 Boards in Market	
2	Explore Raspberry Pi, Setting up Raspberry Pi, Showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS	3
	Communication Protocols used in IoT	
3	Types of wireless communication, MajorwirelessShort- rangecommunicationdevices,properties,comparisonofthesedevices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT,LPWAN)	3
4	IoT Applications Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, , connected car, connected health(digital health, telehealth, telemedicine), smart retail	3
5	Sensors: Applications of various sensors: Google Maps, Waze, Whats App, Ola Positioningsensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion&OrientationSensors:Accelerometer,Magnetometer,ProximitySensor, GyroscopeCalibration,noise modeling and characterization and-noisefiltering and sensor data processing. Privacy &Security	3

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Design and build systems that will use sensors, communication protocol and actuators.	14

Course Outcomes:

At the completion of this course, students will be able to:			
1.	Understand concept of IOT and ability to implement in real time scenarios		
2.	Design solutions based on IOT architecture and applications in various fields		
3.	Critically analyze security and privacy issues in IOT		
4.	Apply knowledge to Design and develop		
	variousapplicationsofsensorsinIndustrial, health care, commercial, and building automation		

Bibliography:

S.No.	Book Detail	Year of Publishing
1	Vijay Madisetti and ArshdeepBahga, Internet of Things (AHands-on Approach), 1st Edition, VPT	2014
2	Francis daCosta, Rethinking the Internet of Things: A ScalableApproach to Connecting Everything, 1stEdition, Apress Publications	2013
3	CunoPfister, Getting Started with the Internet of Things, OReillyMedia	2011
4	Kyung, CM., Yasuura, H., Liu, Y., Lin, YL., Smart Sensorsand Systems, Springer International Publishing	2015

MOOCs on this course are available at:

- 1) Introduction to Internet of Things https://www.edx.org/course/introduction-to-theinternet-of-things-iot
- 2) IoT Programming and Big Data -https://www.edx.org/course/iot-programming-bigdata-curtinx-iot4x

Course Name	:	Machine Learning
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	4-6

Total no. of lectures: 14 Total no. of lab hrs: 14

Course Objectives:

	The main objectives of this course are:
1.	To formulate machine learning problems corresponding to different applications.
2.	To understand a range of machine learning algorithms along with their strengths and weaknesses.
3.	To develop reasoning behind Model selection, model complexity, etc.

Course Contents:

S.No.	Course Contents	No.	of
		Lectu	ires
	BASICS OF MACHINE LEARNING:		
	Applications of Machine Learning, processes involved in Machine		
1	Learning, Introduction to Machine Learning Techniques: Supervised	3	
	Learning, Unsupervised		
	LearningandReinforcementLearning,ReallifeexamplesofMachineLearning.		
	SUPERVISED LEARNING:		
	Classification and Regression: K-Nearest Neighbour, Linear		
2	Regression, Logistic Regression, Support Vector Machine (SVM),	6	
	Evaluation Measures: SSE, MME, R2, confusionmatrix, precision, recall, F-		
	Score,ROC-Curve.		
	UNSUPERVISED LEARNING:		
2	Introductiontoclustering, Types of Clustering: Hierarchical-	5	
3	AgglomerativeClustering and Divisive clustering; Partitional Clustering -	3	
	K-means clustering, Principal Component Analysis, ICA.		

Lab Work:

S.No.	Lab Contents	No. of
		hours
1	Python Introduction: Loops and Conditions and other preliminarystuff, Functions, Classes and Modules, Exceptions, Database access, Mathematical computing with Python packages like: numpy, Mat- plotLib,pandas Tensor Flow, Keras	8
2	Application Oriented Project Work	6

Course Outcomes:

At the completion of this course, students will be able to:			
1.	Design and implement machine learning solutions to classification, regression and clustering problems		
2.	Evaluate and interpret the results of the different ML techniques		
3.	Design and implement various machine learning algorithms in a range of Real-world applications.		
4.	Use Python for various applications.		

Bibliography:

S.No.	Book Detail	Year of Publishing
1.	Tom Mitchell, Machine Learning, McGraw Hill,	2017
2.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer,	2011.
3.	T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e,	2008.
4.	Yuxi (Hayden) Liu, "Python Machine Learning By Example", Packet Publishing Limited	2017

MOOCs on this course are available at:

- 1) Data Science: Machine Learning -https://www.edx.org/course/data-science-machinelearning
- 2) Machine Learning https://www.coursera.org/learn/machine-learning

Design of Experiments and Research Methodology

Course Name	:	Design of Experiments and Research Methodologies
Course Code	:	
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28

Total No. of Lab hrs. 28

Course Objectives:

The students should be able to develop an understanding of how to identify research topics, formulate research questions / hypotheses, select an appropriate research and, where applicable, experimental design. Provides a basis so the student can effectively develop a research proposal for either a capstone project, master's thesis, research project, or designed experiment.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction: Types of Research and Their Purposes, Locating,	3
	Analysing, stating and evaluating research problem, need for literature	
	review, steps in conducting literature review, Strengths, Weaknesses,	
	Opportunities, and Threats (SWOT) analysis, research questions and	
	hypothesis, types of hypothesis, evaluation of hypothesis.	
2.	Research Design and Sampling Design: Concept of research design,	2
	features of a good research design, concept of population and sample,	
	characteristics of sample design, types of sampling techniques	
3.	Methods of data collection and measurement: Primary data and	3
	Secondary data, data collection techniques: observation, interview,	
	questionnaires, schedules, case-study, levels of measurement, problems in	
	measurement in research – validity, reliability.	
4.	Statistical Methods of Analysis: Descriptive statistics: mean, median,	4
	mode, range, mean deviation and standard deviation, regression and	
	correlation analysis, inferential statistics: t-tests, Chi-square tests.	
	Correlation (rank difference and product moment), Analysis of variance	
	(ANOVA) (one way)	
5.	Procedure for writing a research report and manuscript: Types of	2
	research reports, steps of writing a report, layout of report, layout of	
	research paper, ethical issues related to publishing, Plagiarism and Self-	
	Plagiarism.	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Select a problem from your area of interest, identifying the type of research	4
	problem it is and perform the SWOT analysis of the existing literature.	
2.	Generate research questions and hypotheses for a problem from your area	4
	of interest.	
3.	Identify the population and sample for the study (highlighting the	4
	technique used for sample selection) for a problem from your area of	

	interest.	
4.	Design a questionnaire for the problem of interest.	4
5.	Utilizing software such as Statistical Package for the Social	6
	Sciences(SPSS), Mini Tab, etc. for the statistical analysis of the results	
	obtained for the desired questionnaire.	
6.	Preparing a research paper for the problem of interest	6

Course Outcomes:

-			
At the e	At the end of the course, students will be able to:		
1.	Develope an understanding of how to identify research topics, formulate research		
	questions and corresponding hypotheses, select an appropriate research and where		
	applicable, experimental design.		
2.	Perform required statistical analyses for any univariate application in a business /		
	industrial setting, regardless of data form, and will be familiar with major indices for		
	measuring correlation and association.		
3.	Further, the underlying assumptions related to each statistical test and its		
	interpretation will be thoroughly reviewed.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Probability and Statistics for Engineers and scientists by Anthony J. Hayter, Cencage Learning, 4th Edition	2016
2.	Probability and Statistics for Engineers and scientists by Walpole, Myers, Myers and Ye, 8th ed Pearson Education	2007
3.	Research Methodology - Methods and Techniques, C. K. Kothari, New Age International, 2nd Edition	2004
4.	English for writing research papers by Adrian Wallwork, 2nd Edition. Springer	2016
5.	Statistics: Concepts and Controversies by David S. Moore, William I. Notz, W. H. Freeman	2016

Available MOOCS:

1. https://www.coursera.org/learn/research-methods

2. https://www.lawctopus.com/certificate-course-on-research-methodology-online/

Program Core I

Course Name	:	Modern Control Systems
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. of Lectures – 28 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
1.	To learn the modeling concepts of system, modelling using state space.
2.	Tolearn and implement the optimal control techniques.
3.	To design the digital control system and nonlinear systems.

Course Contents:

Sr No.	Course Contents	No. of Lectures
1	Introduction: Control systems design requirements, classical versus	2
	modern approaches of design	
	State Space Representation: Concepts related to state space, state space	
2	representation, state transition matrix, solution of linear time invariant and	3
	linear time varying state equations, canonical forms	
	Control System Design in State Space: Controllability, pole placement	
3	design using full state feedback-regulator and tracking systems, observers,	6
	observability and compensators, full order and reduced order observers	
	Linear Optimal Control : Optimal control problem, infinite time	
4	linear optimal regulator design, optimal control of tracking systems	6
	(Riccati equation based designs).	
	Digital Control Systems: Basic concepts, z-transform, stability,	
_	performance, state space modeling and solution of linear digital equations,	7
Э	design using pole placement,: regulators and observers and compensators,	/
	linear optimal control of digital systems.	
	Nonlinear Control Systems: Sources of nonlinearities and characteristics	
6	of nonlinear systems, describing function method, phase plane analysis,	4
	Lyapunov stability theory.	

Lab Work:

Sr. No.	Lab Contents	Lab Hours
1	State space modeling of continuous time system and study of stability and state and output responses	02
2	Pole placement design using state feedback for regulator and tracking systems	02

3	Full and reduced order observer design	02
4	State space modeling of discrete time system and study of responses	02
5	Pole placement design for regulator and tracking discrete time systems	02
6	Observer design for discrete time systems	02
7	Describing function analysis of nonlinear systems	02
8	Phase plane analysis of nonlinear systems	02
9	Project 1	04
10	Project 2	04
11	Project 3	04

Course Outcomes:

By th	By the end of this course, the student will be:		
1	able to apply the modeling concepts of system modeling using state space and understand the design issues in the framework of modern control.		
2	conversant with the optimal control techniques.		
3	conversant with the concepts of digital control system and non-linear systems.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	A.Tewari, Modern Control Design with MATLAB and Simulink.	2002		
-	JohnWiley and Sons Ltd.			
2	K. Ogata, Modern Control Engineering.PHI.	2014		
3	M. Gopal, Modern Control System Theory. New Age	2005		
-	International (P) Ltd.			
4	M.Gopal, Digital Control and State Variable Methods. TMH. 2003			
5	W. L. Brogan, <i>Modern Control Theory</i> . Pearson Education India. 2011			

MOOCs on this course are available at:

- 1) Lecture Series On Control Engineering, Prof. Sd Agashe, IIT Bombay: nptel.iitm.ac.in.
- 2) 2)Introduction to Control System Design A First Look, Jacob White, Joe Steinmeyer, MIT,

https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x

3) Non-linear systems, Slotine, MIT, http://web.mit.edu/nsl/www/videos/lectures.html

Program Core II

Course Name	:	Advance Power System Analysis
Course Code	:	
Credits		2
LTP		2-0-2
Segment	:	1-4

Total No. Lectures:21 Total No. of Lab hours: 14

Course Objectives:

	The main objectives of this course are:
1.	To acquire knowledge of the fundamentals of network analysis using matrices.
2.	To get understanding of two-port and multi-port networks.
3.	To acquire knowledge of network synthesis and filter circuits.

Course Contents:

Sr.No	Course Contents	No. of Lectures
	Review of Power Flow Studies:	
1	Review of 1-phase load – Load flow studies using Y-bus, Gauss- Seidel,	4
1.	Newton-Raphson, Fast decoupled power flow. Comparison of various	4
	methods of load flow solution, AC-DC load flow.	
	Three phase networks:	
	Three phase network elements, three phase balanced network,	
2.	Transformation matrices. Three phase unbalanced network elements.	6
	Algorithm for formation of three phase bus impedance matrix.	U
	Modification of three-phase bus impedance matrix for changes in the	
	network, 3-φ load flow analysis.	
	Network fault, security and contingency analysis:	
3.	Fault computation using Z-bus. Short-circuit calculations for three phase	7
	networks using Z bus. Contingency analysis for Power systems.	
	State estimation from line measurements:	
	The line power flow state estimator. State estimation and noisy	
4.	measurements. Monitoring the power system Determination of variance	4
	\div Z2 – to normalize measurements, improving state estimates by adding	
	measurements.	

Lab Work:

Sr.No	Lab contents	No. of Hours
1.	Power Flow Studies with integration of Renewables	6
2.	Simulation of short circuit faults on 3-phase power system.	8

Course Outcomes:

At the completion of this course, students will be able to:		
1.	Model, analyze the power system in the study state.	
2.	Apply the contingencies arising in the system under different conditions.	
3.	Do the state estimation from line measurements	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Hadi Saadat, "Power System Analysis", McGraw Hill, 2 nd edition.	2004
2	Grangier& Stevenson, " <i>Power System Analysis</i> ", McGraw Hill International Students Edition.	2003
3	P.M. Anderson, "Analysis of Faulted Power Systems", IEEE Press Book.	1995

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Glonn N. Stagg and ahmed H. El-Abiad, "Computer Methods in Power System Analysis" McGraw Hill, International Edition	1988
2	George L.Kusic, " <i>Computer-aided Powersystem Analysis</i> ", Prentice Hall.	1986
3	J.Arrillaga, C.P. Amold and B.J. Harker, "Computer Modeling of Electrical Power Systems", John willey&Sons	1983
4	M.A. Pai, " <i>Computer Techniques in Power System Analysis</i> ", Tata McGraw Hill	1979
5	O.I. Elgard, " <i>Electric Energy Systems– An Introduction</i> ", TataMcgraw Hill	1971

MOOCs on this course are available at:

1) Debapriya Das ,Indian Institute of Technology, Kaharagpur, https://swayam.gov.in/courses/4745-july-2018-power-system-analysis

Course Name	:	Emerging Trends In Power Industries
Course Code	••	
Credits	:	1
LTP	:	3-0-0
Segment	:	5-6

Total No. of Lectures- 14

Course Objectives:

	The main objectives of this course are:
1.	To acquire knowledge of Indian power market, grid operation and its storage.
2.	To learn about non conventional energy sources and their coordination with industries.

Course Contents:

Sr	Course Contents	No.of
No.		Lectures-
		14
	India Power Market:	
1.	Energy Needs of India, Energy policy, Generation mix, Opportunity and	3
	Challenges, Cost of Electricity, Future of India power market	
	Grid operation:	
2.	Basics of grid operations, Interconnection requirements for conventional	
	technologies, Voltage and frequency control in grid, Role of excitation and	4
	governing control systems, Isochronous and droop control, Load shedding	
	and islanding, Introduction to power system stabilizer	
	Renewable integration:	
2	Renewable technologies, Challenges with high renewable penetration,	4
з.	Managing higher Solar and wind generation in grid, importance of	4
	forecasting, Interconnection requirements for renewables.	
	Grid scale Energy storage	
4.	Need for energy storage devices, types of energy storage solutions, their	3
	advantages, limitations and applications.	

Course Outcomes:

At the completion of this course, students will be able to:		
1.	Understand recent trends in power industries	
2.	About Indian power market, grid operation, renewable integration and grid scale	
	energy storage.	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Dong, Z., Zhang, P., "Emerging Techniques in Power System	2010

	Analysis", Springer	
2	Bent Sørensen, "Renewable Energy", Elsevier,4th Edition	2010

MOOCs on this course are available at:

1) N.P Padhy, IIT Roorkee, https://swayam.gov.in/courses/4778-july-2018-introduction-to-smart-grid

2)Laura Ramirez, Pavol Bauer & Seyedmahdi Izadkhast, "Solar Energy: Integration of Photovoltaic Systems in Microgrids", Delf University of Technology, *https://www.edx.org/course/solar-energy-integration-photovoltaic-delftx-pv4x-0*

Program Elective I – E1

Course Name	:	EHVAC And HVDC Transmission System
Course Code	:	•
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures:-14 Total No. Lab Hours:-14

Course Objectives:

	The main objectives of this course are:
1.	To differentiate between HVDC Transmission and EHVAC transmission network.
2.	To have understanding of reactive power planning for EHV lines.
3.	To model and analyse EHVAC and HVDC network.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Comparison of EHVAC and DC transmission, description of DC	2
	transmission systems, modern trends in AC and DC transmission.	
2	Voltage profile and voltage gradient of conductor, electrostatic field of	2
	transmission line	
3	Travelling and standing waves, EHV cable transmission system,	2
	Limitations of extra-long AC transmission,	
4	Converter configurations and their characteristics, DC link control,	2
	converter control characteristics; Monopolar operation, converter with	
	and without overlap,	
5	Smoothing reactors, transients in DC line, converter faults and	2
	protection, HVDC Breakers.	
6	Component models, solution of DC load flow, per unit system for DC	2
	quantities, solution techniques of AC-DC power flow equations	
7	Parallel operation of HVDC/AC systems, Multi terminal systems.	2

Lab Work:

Sr	Lab Contents	No. of
No.		Hours
1	Mathematical modeling of EHV lines	4
2	Simulation and time domain analysis of EHV network during prefault and	5
	post fault conditions using soft computational method (PSCAD &	
	MATLAB)	
3	Simulation, time domain analysis and FFT analysis of two terminal	5
	HVDC network during prefault and post fault conditions using PSCAD.	

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Compare the HVDC Transmission and EHVAC transmission network and idea of
	modern power system
2.	Realize the characteristics of EHV lines
3.	Understand the role of impedance control, phase angle control and voltage control in
	controlling real and reactive power in transmission systems
4.	Identify and analyze converter configurations used in HVDC and list the performance
	metrics.
5.	Understand controllers for controlling the power flow through a dc link and
	multiterminal operation of HVDC system

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Padiyar K.R., "HVDC Power Transmission Systems", Wiley Eastern Ltd.	2015
2	Begamudre R.D., "EHV AC Transmission Engineering", Wiley Eastern Press.	2011
3	Arrillaga J. and Smith B.C., "AC-DC Power System Analysis", IEE Press.	1998
4	Arrillaga J., "HVDC Transmission", IEE Press.	1998

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	Kimbark E., Direct Current Transmission, Vol-I, John-Wiley and sons, NY	1971

MOOCs on this course are available at:

1) Subba reddy,Indian Institute of Science , *https://swayam.gov.in/courses/3756-advances-in-uhv-transmission-and-distribution*

Course Name	:	Renewable Energy Systems
Course Code	:	•
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objective:

	The main objectives of this course are:
1.	To make students familiar with working and operation of non-conventional energy systems.
2.	To make students capable to design different renewable systems.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Introduction Introduction to Energy Sources: Energy sources and their availability,	2
	Non-renewable reserves and resources; renewable resources.	
2.	 Solar Energy Solar processes and spectral composition of solar radiation; Radiation flux at the Earth s surface. Solar collectors. Types and performance characteristics. solar energy storage. b)Application of solar energy: Solar thermal electric conversion, Thermal electric conversion systems, solar electric power generation, Design of photovoltaic system for power generation solar cells. 	3
3.	Wind Energy Wind energy conversion; efficiency limit for wind energy conversion, types of converters, aerodynamics of wind rotors, power ~ speed and torque ~ speed characteristics of wind turbines, wind turbine control systems; conversion to electrical power: induction and synchronous generators, grid connected and self-excited induction generator operation, constant voltage and constant frequency generation with power electronic control, reactive power compensation;	5
4.	Tidal Energy: Wave characteristics, Conversion systems and their performance features application	1
5.	Geothermal Energy: Introduction to Geothermal Energy Conversion	1
6.	Biomass Energy: Introduction to Biomass Energy Conversion	1
7.	Hydro Energy: Electricity generation and Water pumping, Micro/Mini hydropower systems	1

Lab Work:

Sr.No	Lab contents	No. of
		110015
1	To determine various characteristics of solar modules of a standalone PV	4
	system.	
2	Evaluation of heating/cooling and performance of parabolic solar	2
	concentrator.	_
3	Case study on effect of change of solar PV tilt angle on power output	4
4	Power analysis at different branches of wind turbine energy system (at	4
	high frequency) with AC/DC load.	4

Course Outcomes:

At the completion of this course, students will be able to:	
1.	Acquire the knowledge of working of non conventional energy sources as solar
	energy, wind energy, energy from biomass, hydro energy (micro/mini hydro plants).
2.	Design and analyze renewable energy system.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	S. A. Abbasi and N. Abbasi, " <i>Renewable Energy Sources: Their Impact on Global Warming and Pollution</i> ", Prentice Hall of India	2010
2	D. P. Kothari, K. C. Singal, R. Ranjan, " <i>Renewable Energy Sources and Emerging Technologies</i> ", Prentice Hall of India	2008
3	S. N. Bhadra, D. Kastha, S. Banerjee, "Wind Electrical Systems", Oxford Univ. Press, New Delhi	2005

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	G.Boyle, "Renewable Energy: Power for a Sustainable Future", Oxford, 3 rd edition	1996

MOOCs on this course are available at:

Technical University of Denmark, *https://www.coursera.org/learn/wind-energy* P.Haridos, IIT Madras, *https://swayam.gov.in/courses/4894-july-2018-non-conventional-energy-resources*

Course Name	:	Power Conditioning
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. of Lectures-21

Course Objectives:

	The main objectives of this course are:
1.	Tounderstand and apply various concepts of harmonic generation and mitigation.
2.	To provide knowledge of transformation from 3 phase to single phase using two axis
	theory, active power line conditioners.

Course Contents:

Sr	Course Contents	No. of
No.	Course Contents	Lectures
1.	Harmonic Producing Loads, Mitigation and Power Supplies Compensation of arc furnace and traction loads. Microwave ovens, light and temperature controllers, power supplies for appliances such as camera, X- Ray equipments. Power supplies in Telecommunication systems, High frequency induction heating, Dielectric heating, Power supplies in automobiles.	4
2.	Power Definitions and Instantaneous Reactive Power Theory Concepts and Evolution of Electric Power Theory, Electric Power Definitions, Instantaneous Power Theory: Basis of the pq Theory, Clarke Transformation, pq theory application to 3φ -3 wire and 3φ -4 wire systems, Modified pq theory, Instantaneous abc theory. Comparison of pq theory and Instantaneous abc theory. Synchronous Reference Frame Theory and applications.	8
3.	Active Power Line Conditioners Passive filters and limitations, active filters for harmonic and reactive power compensation in two wire, three wire and four wire ac systems, Shunt Active Filter, Hybrid and Series Active Filters, Combined Series and Shunt Power Conditioners. Case studies on microcomputer and DSP control in active filters and power supplies.	9

Course outcome:

At the completion of this course, students will be able to:		
1.	Apply various concepts of power conditioning.	
2.	Design converters for harmonic mitigation	
3.	Acquire knowledge of three phase to single phase transformation.	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Patricio SalmeronRevuelta, Salvador Pérez Litrán, Jaime Prieto Thomas "Active Power Line Conditioners: Design, Simulation and Implementation" Elsevier publications.	2016
2	A.E.Emanuel, "Power Definitions and the Physical Mechanism of Power Flow", IEEE Press, John Wiley and sons Ltd.	2010
3	H Akagi, E.H. Watanabe and M Aredes, "Instantaneous power Theory and applications to Power Conditioning", IEEE Press, John Wiley and sons Incorporate.	2007
4	J Arrilaga and N.R Watson, "Power System Harmonics", John Wiley and Sons Ltd.	2003

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J Arrilaga, D.A Bradley and P.S Bodger, "Power System Harmonics", John Wiley and Sons Ltd, 1995.	1995

MOOCs on this course are available at:

1) Power quality in power distribution systems, NPTEL http://nptel.ac.in/courses/108106025/

Program Elective II – E2

Course Name	:	Modern Power System Protection
Course Code	:	
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures:14 Total No. of Lab Hours:14

Course Objectives:

	The main objectives of this course are:
1.	To make students aware about the need and importance of power system protection.
2.	To provide understanding of the protection algorithm for static and microprocessor
	based relays for different type of setups.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	The need for electrical protection. The principles behind the protection of the power system and its components. The relay/circuit-breaker combination.	02
2	Differential protection, Voltage regulation protection, Frequency regulation protection. Distance protection. Negative sequence protection.	03
3	Introduction to Computer Relaying. Remote substation access and local intelligence. PLCs. SCADA Systems. Microprocessor and PLC based protection schemes.	03
4	Integrated approach to power system protection using the existing electromechanical relays, the static electronic relays, and the microprocessor based digital relays.	03
5	Adaptive relaying, EHV System Protection, Protection System failures. Case studies of Blackouts: Causes and Countermeasures	02
6	Protection of Wind and Solar Plants.	01

Lab Work:

Sr.No	Lab contents	
		Hours
1	Relay coordination in radial distribution system.	2
2	Algorithm design for over current protection and other relays	3
3	Fault detection using sample to sample difference,	3
4	Time domain and FFT analysis during pre and post fault conditions	3
5	Understanding the realization of overcurrent and distance protection using	3
	comparator ckt.	
Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Obtain the realization of need and importance of power system protection.
2.	Acquire the knowledge of different protection schemes and will be able to realize,
	simulate and analyse protection algorithm.
3.	Understand protection system for Wind and Solar Plants.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Stanley H. Horowitz and Arun G. Phadke," <i>Power System Relaying</i> ", John Wiley& Sons, Third Edition	2014
2	Arun G. Phadke, James S. Thorp, " <i>Computer Relaying for Power Systems</i> ", John Wiley & Sons.	2009
3	Badri Ram, D. N. Vishwakarma, " <i>Power System Protection and Switchgear</i> ", Tata McGraw-Hill Education.	2007
4	L.P.Singh, "Digital Protection: Protective Relaying from Electromechanical to Microprocessor", New Age International.	2004
5	T S MadhavRao, "Power System Protection, Static Relays with Microprocessor applications", TataMcGRAW Hill.	2001

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	A. Allan T Johns and S.K. Salman, "Digital Protection for Power Systems", IEE Power.	1995

MOOCs on this course are available at:

1)Power System Protection, NPTEL, http://nptel.ac.in/downloads/108101039/

Course Name	:	Power System Planning
Course Code	:	•
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. of Lectures-21

Course Objectives:

	The main objectives of this course are:
1.	To learn the fundamentals of power system planning reliability
2.	To learn short term load forecasting and planning in deregulated environment
3.	To learn power system planning with hybrid sources.

Course Contents:

Sr		No. of
No.	Course Contents	Lectures
1.	Introduction Background: Power industry restructuring Electricity Act 2003; Electricity market models; Electricity market fundamentals for planning purpose	6
2.	Power System Planning Fundamentals Planning criteria; Uncertainties, Planning Process, Generation planning, Transmission planning, Least-cost planning, Risks and making choices in planning; short term and long term load and price forecasting	8
3.	New Challenges of Power System Planning in Deregulated Environment Deterministic vs.probabilistic approaches; Probabilistic power system planning, Combining conventional and nonconventional sources for optimal power system planning in deregulated environment.	7

Course outcome:

At the completion of this course, students will be able to:	
1.	Understand electricity market fundamentals for planning purpose
2.	Apply short term and long term load and price forecasting
3.	Implement optimal power system planning in deregulated environment

References:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Lo lei Lai, "Power System Restructuring and Deregulation: Trading, Performance and Information Technology" Wiley	2002

2	M.llic, F.Frliana, L.Fink, "Power System Restructuring", Kluwer Academic Publishers	1998
3	R.L.Sullivan,"Power System Planning",McGraw Hill	1997

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	X.F. Wang and James Mcdonald, " <i>Modern Power System Planning</i> ", McGraw-Hill Publishing Co.	1993
2	R.Billinton, R.N.Allan, " <i>Reliability Assessment of Large Electric Power Systems</i> ", Springer, 2 nd edition	1988

MOOCs on this course are available at:

1)Restructured Power Systems, NPTEL, http://nptel.ac.in/courses/108101005/

Course Name	:	Power System Operation And Control
Course Code	••	•
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Total No. Lectures:- 14 Total No. Lab Hours:- 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the concepts of power systems operation, security and dispatch.
2.	To acquire knowledge of single area, multi area and interconnected system and their operation
3.	To learn Optimal Power Flow Techniques and Optimal Power Flow Calculations.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Power Systems Operational Security and Dispatch	3
	Review of security concept and state of operation, generation dispatch;	
	dynamic security, economic load dispatch, unit commitment.	
2	Frequency Control and AGC	3
	Review of theory of frequency dynamics. Multi-area frequency	
	dynamics, Load-frequency and tie-line power flow control. Theory of	
	Automatic Generation control, AGC implementation methods.	
3	Interconnected Systems Operation	4
	Need of system interconnection. Operating policies, Economic	
	interchange, Optimal multi-area Operation.	
4	Optimal Power Flow	4
	Introduction to Optimal Power Flow Techniques and Optimal Power	
	Flow Calculations.	

Lab Work:

Sr.No	Lab contents	No. of Hours
1	Optimal power flow, economic dispatch, AGC solutions with the help of	14
	MATLAB and software for different standard test systems.	

Course Outcomes:

At	the completion of this course, students will be able to:
1.	Gain the knowledge of the concepts of power systems operation, security and dispatch.
2.	Develop the frequency control and AGC in single area and Interconnected Systems
	Operation.
3.	Attain understanding of Unit commitment, Real-Time Control and Optimal Power Flow.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Dr. K Uma Rao, "Power System Operation & Control", Wiley	2012
2	B.R. Gupta and Vandhana Singhal, "Power System Operation & Control", S.Chand	2010
3	S.Sivanagaraju, "Power System Operation & Control", Pearson	2009
4	Mahalanabis et al., " <i>Computer-aided power system analysis</i> " Tata McGraw-Hill	1988

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Wood and Wollenberg "Power Generation Operation and Control", John Wiley, 1984.	1984
2	OI Elgerd "Electric Energy Systems, Theory", McGraw Hill, 1983	1983
3	IEEE Power Engineering Society, <i>"Fundamentals of supervisory systems"</i> IEEE Tutorial Course	1981
4	Anderson & Fouand "Power system control and stability" Lowa State University Press, 1977.	1977

MOOCs on this course are available at:

1) Power system generation, transmission and distribution, NPTEL, <u>http://nptel.ac.in/courses/108102047/</u>

Engineering Mathematics

Course Name	:	FOURIER TRANSFORMS
Course Code	:	
Credits	:	01
LTP	:	2-1-0
Segment	:	1-2

Total No. of Lectures-10 Tutorials -5

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the concept of Fourier transform and be able to compute it for
	standard examples.
2	To make the students able to apply Fourier transforms to solve differential equations and partial
	differential equations.

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Fourier Transforms: Fourier Integral formulas, Definition and examples, Basic properties, Fourier cosine and sine transforms and examples, Basic properties of Fourier cosine and sine transforms, Multiple Fourier transforms.	05
2	Fast Fourier Transforms and Short Term Fourier Transforms: Definition and	05
	examples, Basic properties, Applications.	

Course Outcomes:

At the	e end of the course, students will be able to:
1	Solve differential equations by using Fourier transforms
2	Solve partial differential equations by using Fourier transforms
3	Apply FFT and STFT to engineering problems

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Integral Transforms and Their Applications", Loknath Debnath, CRC	1995.
	Press, Inc.,	
2	"Integral Transforms and their Applications", Brian Davies, 3rd	2001
	Edition, Springer-Verlag, New York, Inc,	
3	"Fourier Transform and Its Applications", Ronald N. Bracewell, 2nd	1986
	Edition, McGraw-Hill Inc., US,	

Course Name	:	NUMERICAL METHODS
Course Code	:	
Credits	:	01
LTP	:	2-0-2
Segment	:	3-4

Total No. of Lectures – 10 Practicals -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the basics of numerical methods.
2	To make the students able to solve problems on system of linear equations and Interpolation by
	numerical methods.

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Error Analysis: Definition and sources of errors, Propagation of errors, Floating-	02
	point arithmetic and rounding errors.	
2	Interpolation: Interpolation using Finite differences, Numerical Differentiation	04
	and Numerical integration, Trapezoidal and Simpson's rules.	
3	Numerical Solution of Differential Equations: Picard's method, Taylor series	04
	method, Euler and modified Euler methods, Runge-Kutta methods, Predictor-	
	Corrector method.	

Lab Work:

Sr.No	Lab. Contents	No. of
		Hours
1.	Solving Interpolation, Numerical Differentiation and Numerical integration	04
	problems using Mathematica.	
2.	Solving Differential equations numerically using Mathematica.	06

Course Outcomes:

By the end of the course, the students will be able to solve the following by numerical methods:

- 1. Problems on Interpolation
- 2. Problems on Differentiation, Integration.
- 3. Solve differential equations.

Sr.No.	Name of Book / Authors / Publishers	Year of Publication/
		Edition
1	"Introduction to Numerical Analysis", Atkinson K. E., John Wiley.	1989
2	"Applied Numerical Analysis", Gerald C. F. and Wheatley P. O., Pearson	2004
3	"Numerical Methods for Scientific and Engineering Computation", Jain M.	2004
	K., Iyengar S.R.K. and Jain R. K., New Age International Publisher.	
4	"Elements of Numerical Analysis", Gupta R.S., Macmillan India Ltd.	2008

Course Name	:	OPTIMIZATION TECHNIQUES AND GENETIC ALGORITHMS
Course Code	:	
Credits	:	01
LTP	:	2-0-2

Total No. of Lectures – 10,

Practicals -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the need of Optimization Techniques and develop the ability to
	form mathematical model of optimization problems.
2	To make the students able to identify and solve linear and non-linear models of optimization
	problemsusing Genetic Algorirhms.

Course contents:

Sr.No	Course Contents	No. of Lectures
1	Introduction to optimization problem, local and global optimum, conversion of a constrained problem to unconstrained problem.	04
2	Genetic Algorithms, Binary and Real coded Genetic Algorithms, Coding and decoding of variables, Key steps in a GA, starting population, fitness evaluation, reproduction, crossover, mutation, evaluation.	06

Lab Work:

Sr.No	Lab. Contents	No. of
		Hours
1.	Using Genetic Algorithms in various optimization Problems	10

Course Outcomes:

1	The students are able to form mathematical model of optimization problems .
2	The students are able to distinguish between linear and nonlinear models.
3	The students are able to solve simple problems using Mathematica/MATLAB

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Practical Genetic Algorithms", Haupt, R. L. and Haupt, S.E., John Wiley	1998
	&Sons	
2	"Genetic Algorithm in Search, Optimization and Machine Learning",	1989
	Goldberg, D.E., Addison Wesley.	
3	"Engineering Optimization", Ranjan, Ganguli, University Press.	2011

Semester 2

Soft Skills & Management

Course Name	:	Communication Skills
Course Code	:	
Credits	:	1.5
LTP	:	1-0-4
Segment	:	1-3

Total No. Tutorials-7 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
4.	To enhance competence in communication skills: verbal and nonverbal.
5.	To provide orientation in technical communication skills: spoken and written.
6.	To sensitize students to attitude formation and behavioural skills.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Communication Skills, Soft Skills and Interpersonal Communication	1
2.	Speech: Structure, Elements, Content, Organization and Delivery, J-a-M	1
3.	Writing Skills: Letters, Minutes of Meeting	1
4.	Technical Report Writing: Concept and Structure	1
5.	Research Writing: Concept and Structural Framework	1
6.	Power Point Presentation: Project Presentation	1
7.	Interviews	1

Lab Work:

Sr.No	Lab contents	No. of Hours
1	Self-Introduction	2
2.	Negotiation Skills & Role Play	2
3.	J-a-M Session	2
4.	Building Word Power through Reading	2
5.	Group Discussion and Case Study	4
6.	Writing Skills: Letters, Minutes of Meeting	2
7.	Technical Report Writing: Concept & Structure	4
8.	Research Writing: Concept and Structural Framework	4
9.	Power Point Presentation: Project Presentation	4
10.	Interviews	2

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	Show enhanced competence in communication skills and technical communication.		
2.	Develop awareness of attitude formation and behavioural appropriateness		
3.	Gain self-confidence and perform better in their academic and professional life.		

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Technical Communication", RamanMeenakshiand SharmaSangeeta,	2015
	Oxford University Press.	
2.	London.	2011
	"English Vocabulary In Use: Advanced+ CD", MichaelMcCarthy,	2004
3.	CUP, Cambridge.	
4.	"Advanced English Grammar", HewingsMartin, CUP, Cambridge.	2003
5.	"Study Listening", TonyLynch, CUP, Cambridge.	2004
6.	"Study Speaking", KennethAnderson, CUP, Cambridge.	2010
7.	"Study Reading", Glendenning H. Eric, CUP, Cambridge.	2004
8.	"Study Writing", HampLyons Liz & HeasleyBen, CUP, Cambridge.	2004
9.	"Study Skills in English", WallaceMichael J., CUP, Cambridge.	2004

MOOCs on this course are available at:

1) "Take Your English Communication Skills to the Next Level". Available at Coursera (Offered by Georgia Institute of Technology), 4 weeks, Starts on September 10, 2018. https://www.coursera.org/learn/english-communication-capstone

2) "Effective Communication in Globalised Workplace- The Capstone". Available at Coursera (Offered by National University of Singapore), 3 weeks, Starts on August 06, 2018. https://www.coursera.org/specializations/effective-communication

Course Name	:	Management Entrepreneurship and IPR
Course Code	:	
Credits	:	1
LTP	:	0-2-0
Segment	:	4-5

Total No. Tutorials – 14

Course Objectives:

The ma	in objectives of this course are:
1.	To make students familiar with the concepts of Management, Entrepreneurship and
	Intellectual Property Rights (IPRs).
2.	To make students understand how to initiate a new Start-up and manage it
	effectively.
3.	To enable students to convert their innovative ideas into different forms of IPRs.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Management: Concepts and Principles of Management	1
2.	Functions of Management: Planning Process - Hypothetical Planning of an Event/Activity, Form of Organization Structure - Case Study, Human Resource Planning and Process, Elements of Directing and Effective Control Mechanism, Activity: Role Playing/Management Game	4
3.	Introduction to Entrepreneurship: Concepts of Entrepreneurship and Characteristics of Entrepreneurs	1
4.	Development Phases of Entrepreneurship: Innovation and Idea Generation, Project Formulation and Validation (Feasibility Analysis), Business plan	2
5.	Ecosystem for Entrepreneurship Development: Government Schemes and Initiatives, Financial and Non-Financial Institutional Support, Legal Framework, Role of Incubator, Venture Capitalist, Angel Investor, Crowd Funding Accelerator etc.	2
6.	Intellectual Property Rights (IPRs): Concept and Relevance of IPRs, Process for filing IPR	2
7.	Different Forms of IPRs: Patents, Copyright, Trademarks, Industrial Designs and Geographic Indicator	2

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Developand manage new project/Start-up.
2.	Apply managerial skills for success of entrepreneurial/business venture.
3.	Make effective use of IPR practices in their ventures.

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Management Principles and Practice", Srinivasan R. and Chunawalla S.A., Himalaya Publishing House.	2017
2.	"Introduction to Management", Schermerhorn John R. Jr. And Bachrach Daniel G., 13 th Edition, Wiley Publications	2016
3.	"Principles & Practice of Management", Prasad L.M., 8 th Edition, Sultan Chand & Sons.	2015
4.	"The New Era of Management", Daft R.L., 11 th Edition, Pubs: Cengage Learning.	2014
5.	"Case Studies in Management", Pandey Chandra Akhilesh, 2 nd Edition, I.K. International Publishing House Pvt. Ltd.	2015
6.	"Harvard Business Review: Manager's Handbook", Harvard Business School Press.	2018
7.	"Entrepreneurship", Trehan Alpana, Dreamtech Press.	2016
8.	"Entrepreneurship and Small Business" Schaper Michael, Volery Thierry, Weber Paull and Lewis Kate, 3 rd Asia-Pacific Edition, Wiley Publications	2018
9.	"Harvard Business Review: Entrepreneur's Handbook", 1 st Edition, Harvard Business Review Press	2018
10.	"Take Me Home", Bansal Rashmi, 1 st Edition, Westland.	2014
11.	"Intellectual Property Law", Narayanan P., 3 rd Edition, Eastern Law House	2017
12.	"Intellectual Property Rights", Pandey Neeraj and Dharni Khushdeep, PHI Learning	2014
13.	"Intellectual Property Rights", Rosedar S.R.A., LexisNexis (Quick Reference Guide – Q&A Series)	2016
14.	MSME Annual Publications (<u>www.msme.gov.in</u>)	Annual
15.	WIPO Annual Publications (<u>www.wipo.int</u>)	Annual

MOOCs on this course are available at:

- "Entrepreneurship: Do Your Venture", Available at edx (Offered by IIM Bangalore), Self-Paced (6 weeks). <u>https://www.edx.org/course/entrepreneurship-do-your-venture</u>
- 2) "Becoming an Entrepreneur", Available at edx (Offered by MIT), Self-Paced (6 weeks).

https://www.edx.org/course/becoming-entrepreneur-mitx-launch-x-4

- 3) "How to Build a Start-up", Available at Udacity, Self-Paced (One Month). https://in.udacity.com/course/how-to-build-a-startup--ep245
- 4) "Intellectual Property Rights: A Management Perspective, Available at edx (Offered by IIM Bangalore), Starts on 1 August 2018 (6 weeks). <u>https://www.edx.org/intellectual-property-rights-a-management-perspective</u>

Course Name	:	Professional Ethics
Course Code	:	
Credits		0.5
LTP		0-1-0
Segment		6-6

Total No. Tutorials -7

Course Objectives:

	The main objectives of this course are:
1.	To imbibe ethical values and understanding.
2.	To develop moral thinking that will help students to recognize their potential.
3.	To engage and motivate the students to perform ethically in their professional life.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Ethics: Concept of Ethics – Nature, Scope, Sources,	2
	Types, Functions and Factors influencing Ethics, Ethics in Engineering	
2.	Ethics in Profession: Concepts of Honesty, Integrity, Reliability, Risk,	2
	Safety and Liability, Responsibilities and Rights of Professionals,	
	Professional accountability.	
3.	Ethics and Business: Concept of Business Ethics – Nature and	1
	Objectives, Ethical dilemmas in business ethics.	
4.	Self-Development: Concept of Self-Assessment – SWOT Analysis,	2
	Self-Concepts, Self-Confidence, Self-Esteem, Managing Time and	
	Stress, Human values.	
1		

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Demonstrate knowledge and better understanding of self and to manage time and stress
	effectively.
2.	Have subjective well-being.
3.	Have ethical decision making ability in their personal and professional life.

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Professional Ethics", Subramaniam R., 2 nd Edition, Oxford	2017
	University Press.	
2	"Introduction to Psychology", Kalat James W., 11 th Edition,	2017
Ζ.	Cengage Learning.	2017

2	"Business Ethics – Text and Cases", Murthy C.S.V., 1 st Edition,	2014
5.	Himalaya Publishing House.	
	"A Foundation Course in Human Values and	
4.	Professional Ethics", Gaur R.R., Sangal R. and	2010
	Bagaria G.P., Excel Books.	
	"Issues and Ethics in the Helping Professions", Corey G., Corey	2010
5.	M.S. and Callanan P., 8 th Edition, Brooks/Cole, Cengage	
	Learning.	
6	"The Curse of Self: Self-awareness, Egotism and the Quality of	2007
υ.	Human Life", Leary M.R., 1 st Edition, Oxford University Press.	
7	"Business Ethics", Hartman L.P. and Chatterjee A., 3 rd Edition,	2006
7.	Tata McGraw Hill.	
Q	"Business Ethics and Professional Values", Rao A.B., Excel	2006
0.	Books.	
0	"Business Ethics – Concepts and Cases", Velasquez M.G.,	2001
9.	5 th Edition, Prentice Hall.	
10	"Theories of Personality", Hall C.S., Lindzey D. and Cambell	1997
10.	J.B., 4 th Edition, Hamilton Printing Company.	

MOOCs on this course are available at:

- "Ethics in Engineering Practice". Available at SWAYAM(Offered by IIT Kharagpur), 8 weeks, Starts on August 27, 2018. <u>https://swayam.gov.in/courses/4799-july-2018-ethics-in-engineering-practice</u>
- 2) "Ethics, Technology and Engineering". Available at Coursera (Offered by EindhovenUniversity of Technology), 8 weeks, Starts on July 16, 2018. <u>https://www.coursera.org/learn/ethics-technology-engineering</u>

Program Core III

Course Name	:	Smart Grid Technologies
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. of Lectures-21

Course Objectives:

The m	ain objectives of this course are :
1.	To understand the fundamentals of smart grid technologies such as smart measurements,
	smart technology for smart substations.
2.	To understand micro grid and distributed energy sources, power quality management in
	smart grid, information and communication technology for smart grid.

Course Contents:

Sr	Course Contents	No. of
No.		Lectures
1.	Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference betw. conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. CDM opportunities in Smart Grid.	4
2.	Smart Grid Technologies: Part 1:Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid.	4
3.	Smart Grid Technologies: Part 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).	4
4.	Micro grids and Distributed Energy Resources: Concept of micro grid, need & applications of micro-grid, formation of micro grid, Issues of Inter-connection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, micro turbines, Captive power plants, Integration of renewable energy sources, power quality issues in renewable energy integration.	5
5.	Information and Communication Technology for Smart Grid: Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid.	4

Course outcome:

At the completion of this course, students will be able to:

1.	Understand and analyze smart grid technologies such as smart measurements.
2.	Understand smart substations, micro grid and distributed energy sources, information
	and communication technology for smart grid.

Bibliography:

Sr. No		Year of Publication
1.	Clark W. Gellings, " <i>The Smart Grid: Enabling Energy Efficiency and Demand Response</i> ", CRC Press JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu	2012
2.	Akihiko Yokoyama," Smart Grid: Technology and Applications", Wiley	2012
3.	Jean Claude Sabonnadière, NouredineHadjsaïd, "Smart Grids", Wiley Blackwell	2012
4.	Peter S. Fox-Penner, "Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities"	2010
5.	Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Gr. and Renewable Energy in Electric Power Systems", Wiley	2009
6.	Tony Flick and Justin Morehouse, " <i>Securing the Smart Grid</i> ", Elsevier Inc. (ISBN: 978-1-59749-570-7)	2006
7.	James A. momoh, "Smart Grid: Fundamentals of Design and Analysis," Wiley	2012
8.	Stephen F. Bush, "Smart Grid: Communication-Enabled Intelligence for the Electric Power System," Wiley	2014

MOOCs and online contents on this course are available at:

1)N.P. Pandey, "Introduction to smart grid", IIT Roorkee

(https://swayam.gov.in/courses/4778-july-2018-introduction-to-smart-grid)

2) Narayana Prasad Padhy, Premalata Jena, "Introduction to Smart Grid,"

NPTEL(<u>https://onlinecourses.nptel.ac.in/noc18_ee42/preview</u>)

3)M. Vadari, M. Balasubramanyan, *Distributed Energy – Smart Grid Resources for the Future*, IEEE, Coursera

4)P.S. Prat, *Smart Grids for Smart Cities: Towards Zero Emissions*, FutureLearn, InnoEbergy, *homuork*

5)Dr. M. Vadari and M. Balasubramanyan, *Smart Grids: Electricity for the Future*, IEEE & EDX

Course Name	:	Advance Measurement & Control
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. of Lectures- 21

Course Objectives:

The main objectives of this course are:	
1	The students undergoing this course are expected to learn the concepts of data
	acquisition, signal conditioningand analysis.
2	Learning basics of smart measurement, power system operation and control.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Signal Analysis Instruments	5
	Basic Wave Analyzer, Frequency Selective Wave Analyzer, Heterodyne	
	Wave Analyzer, Harmonic Distortion Analyzer, Spectrum Analyzer	
2	Smart Measurement	5
	Introduction to Smart meters, Smart appliances, Automatic meter	
	reading, smart sensors. Wide area measurement systems, phase	
	measurement unit. Advance metering infrastructure, home area network,	
	neighborhood area network, wide area network.	
3	Power System Control and Instrumentation	6
	Optimal, sub-optimal and decentralized controllers. Discrete mode	
	AGC. Time-error and inadvertent interchange correction techniques.	
	Online computer control. Distributed digital control. Data acquisition	
	systems. Emergency control, preventive control, system wide	
	optimization.	
4	SCADA:	5
	Introduction to Supervisory Control and Data Acquisition, SCADA	
	Functional requirements and Components, General features, Functions	
	and Applications, Benefits, Configuration of SCADA, RTU (Remote	
	Terminal Units) Connections, Power Systems SCADA and SCADA in	
	Power System Automation, SCADA Communication requirements,	
	SCADA Communication protocols: Past Present and Future, Structure	
	of a SCADA Communications Protocol.	

Industrial Visit

Sr.No	Lab contents	No. of Days
1.	Visit To Tata Power Delhi Distribution Ltd.(TPDDL)	3

Course Outcomes

At the	At the end of the course, students will have:	
1	Knowledge of the concepts of data acquisition, signal conditioning and analysis.	
2	Basic understandings of smart measurement for power system operation and control and other applications.	

Bibliography:

Sr.No		Year of Publication/Reprint
1	W.D.Cooper& A.D. Helfrick, "Electronic Instrumentation & Measurement Techniques,"	2008
2	Alan S. Moris "Principals of Measurements & Instrumentation,"	2011
3	Joseph J. Carr, "Elements of Electronics Instrumentation And Measurements,"	1995
4	Fundamentals of supervisory systems, IEEE Tutorial Course Text, 91EH0337-6PWR.	1991

Classical books:

1	Wood and Wollenberg " <i>Power Generation Operation and Control</i> 2^{nd} <i>edition</i> ", John Wiley.	1996
2	C S Rangan, G.R. Sharma, V.S.V.Mani, "Instrumentation Devices & Systems,"	1983
3	Ernest O. Doebelin, "Measurement Systems: Application & Design,"	1989

MOOCs and online contents on this course are available at:

1) Power system operation and control, coordinated by IIT Kanpur, NPTEL, "*http://nptel.ac.in/courses/108104052*,"

2) Energy Management and SCADA, coordinated by IIT Madras, NPTEL, "*http://www.nptel.ac.in/courses/108106022/8*,"

Program Core IV

Course Name	:	Power System Modeling And Dynamics
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures -28 Total No. Lab Hours - 28

Course Objectives:

The ma	The main objectives of this course are:		
1	To learn the basic conceptsof power system components, modeling for linear and non		
	linear system		
2	To learn the methods of system analysis in steady state and transient state operating		
	conditions using eigen value, direct energy conversion		
3	To investigate the set of FACTS devices for improvement of power system stability.		

Course Contents:

Sr.No	Course Contents	
		Lectures
1	SystemModelingReview: Modern power system operation and control, static and dynamic modeling, Load flow studies, transient stability and small signal stability of large power systems, voltage stability: P-V and Q-V curves, static analysis, sensitivity and continuation power flow method, Wide area real-time monitoring systems.	4
2	Introduction to Power System Stability and Preliminary	
	Fundamentals Definition and classification of power system stability, The Swing Equation, The equal area criterion, Synchronizing power and natural frequencies of oscillations, Numerical integration techniques, fundamentals to system identification.	3
3	Modeling of a Synchronous Machine <u>:</u>	
	Synchronous machine model dynamical equations, Park's transformation, Development of the complete d and q - axes equation in per unit, Effect of saturation on Modeling, Synchronous machine parameters, Steady state analysis of synchronous machine, Synchronous machine connected to infinite bus.	4
4	Modeling of Exciter, Turbine and Load:	
	Types of excitation system-AC, DC, Static, Modeling of DC excitation system, introduction to AVR, Modeling and development of Hydraulic turbine transfer function, development of steam turbine transfer function, power system loads-static, synchronous motor, induction motor, ZIP.	6
1.	Small Signal Stability Analysis:	_
	Eigen properties of state matrix, linearizing a nonlinear power system model, Small-Signal stability analysis of single machine connected to	7

	infinite bus, Power system stabilizer, effects of excitation system, small signal stability of multi-machine systems.	
2.	Control of Active and Reactive Power: Speed governing system, Primary control, secondary control, Tertiary control, Automatic Generation Control (AGC), Capabilities and Constraints of Generators/Exciters/Turbines/, Analysis of Uncompensated AC Line, shunt and series compensation, Introduction to FACTS and HVDC controllers.	4

Lab Work:

Sr.No	Lab contents	No. of Hours
1	Modeling of synchronous machines, exciter and turbines.	10
2	Simulation studies of Small Signal Stability of 3- Power system	10
3	Control of three phase active and reactive power simulation studies .	8

Course Outcomes:

At th	e end of the course, students will have:
1	From this course the students shall be able to apply the basic concepts of power system
	components, modeling for linear and non linear system.
2	The students shall be able to apply the methods of system analysis in steady state and
	transient state operating conditions using eigen value, direct energy conversion.
3	The students shall be able to investigate the set of FACTS devices for improvement of
	power system stability.

Sr.No		Year of Publication/Reprint
1	L. P. Singh, "Advanced Power System Analysis and Dynamics," New Age International Publishers, NewDelhi, 6 th Edition.	2012
2	D.P. Kothari, I.J. Nagrath, " <i>Modern Power System Analysis</i> ," 3 rd edition, Tata Mcgraw Hill Education Private Limited	2003
3	K.R.Padiyar, "Power System Dynamics Stability and Control," B.S. Publisher.	2002
4	NarainHingorani, et al, "Understanding FACTS: Concepts And Technology Of Flexible AC TransmissionSystems," IEEE Press Standard Publisher Distributors, Delhi-110006.	1999
5	'P.Sauer & M.A. Pai, "Power System Dynamics & Stability," Prentice Hall.	1997

Classical books:

1	'V.A. Venikov, " <i>Transient Phenomena in power system</i> " Mir Publications.	1964
2	A.A. Fouad and P.M.Anderson, "Power system stability and control" Iowa University Press, Ames, Iowa.	1977
3	E.W. Kimbark, John Wiley and Sons, " <i>Power system Stability, Vol.I and III</i> ," Inc., New York.	1948
4	'P. Kundur, "Power System Stability and Control,"	1994

MOOCs& online contents on this course are available at:

1) Power System Dynamics and Control, coordinated by IIT Bombay, NPTEL,

"http://nptel.ac.in/downloads/108101004/#,"

2) Power System Stability and Control, coordinated by IIT Madras, NPTEL,

"http://nptel.ac.in/courses/108106026/,"

Program Elective III – E3

Course Name	:	Static Reactive Power Control And FACTS
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures:- 14 Total No. Lab Hours:- 14

Course Objectives:

The main objectives of this course are:		
1.	To learn the basic concepts of reactive power transmission, FACTS, voltage sourced	
	converters	
2.	To understand self and line commutated current sourced converters, UPFC, Shunt	
	Compensation, Series compensation.	

Course Contents:

Sr.No	Course Contents			
1.	Introduction: Principles of reactive power control in load and transmission line compensation, series and shunt reactive power compensation. Concepts of Flexible AC Transmission System (FACTS).			
2.	Voltage-sourced converters, Self and line-Commutated Current-Sourced Converters.			
3.	Static shunt compensators, Static series compensators, Static Voltage and phase angle regulators, Unified Power Flow Controller and interline Power Flow Controller.			

Lab Work:

Sr.No	Lab contents	No. of Hours
1.	Power flow, voltage control, transient stability control with FACTS	14

Course Outcomes:

At the completion of this course, students will be able to:		
1.	Understand and apply the basic concepts of reactive power transmission, FACTS, voltage sourced converters	
2.	Understand self and line commutated current sourced converters, UPFC, TCBR, Sen Transformer etc., in electrical power system.	

Bibliography:

Sr.No		Year of Publication/ Reprint
1	R. Mohan Mathur, Rajiv K. Varma, "Thyrister based FACTS controllers for electrical transmission system," Wiley	2011
2	R.K.Varma and R.M.Mathur, " <i>Thyristor Controlled Flexible AC Transmission System</i> ," IEEE Press.	2002
3	N.G. Hingorani and L.Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible ACTransmission Systems," Standard Publishers-Distributors.	2000

Classical books:

1	Miller T.J.E., " <i>Reactive Power Control in Electric Systems</i> ", John Wiley.	1982
---	---	------

MOOCs and online contents on this course are available at:

1) Avik Bhattacharya, "Facts Devices," IIT Roorkee, NPTEL

(https://onlinecourses.nptel.ac.in/noc18_ee44/preview)

2) Avik Bhattacharya, "Facts Devices," Swayam (*https://swayam.gov.in/courses/4784-july-2018-facts-devices*)

Course Name	:	Fast Transients In Power Systems
Course Code	••	
Credits	:	1.5
LTP	:	300
Segment	:	1-3

Total No. Lectures:-21

Course Objectives:

The main objectives of this course are:		
1.	To describe the concepts, origin and the effect of fast transients, lightning	
	phenomenon.	
2.	To learn the theory of ground wires, switching surges, insulation coordination,	
	transients in integrated power systems.	

Course Contents:

Sr.No	Course Contents	No. of Lectures
1.	INTRODUCTION TO FAST TRANSIENTS Origin and nature of power system Transients, traveling waves on transmission system, the line equation, the shape attenuation and distortion of waves, reflection of traveling waves, successive reflections, traveling waves on multi conductor systems.	7
2.	THEORY OF GROUNDS WIRES & SWITCHING SURGES: Mathematical model of lightning stroke. Direct stoke to a tower, effect of reflection up and down the tower, the counterpoise. Normal frequency effects, high charging currents, cancellation waves, recovery voltage, restricting phenomena. Protection of transmission systems against surge	7
3.	TRANSIENTS IN INTEGRATED POWER SYSTEMS Introduction, the short line or kilometric fault, line dropping and load rejection, voltage transients on closing and re-closing lines, over voltages induced by faults, switching high-voltage direct current lines, switching surges on an integrated system, transients in the industrial power network, transients due to capacitor switching.	7

Course Outcomes:

At the	completion of this course, students will be able to:
1	To apply the concepts, origin and the effect of fast transients, lightning
	phenomenon, theory of ground wires.
2	To understand switching surges, insulation coordination, transients in integrated
	power systems and computer aided calculation of electrical transients.

Bibliography:

S No		Year of
0.110		Publication/Reprint
1	Akihiro Ametani, Naoto Nagaoka, Yoshihiro baba, Teruo	2012
1	ohno, "Power Sytem Transients," CRC press	2015
2	C.S. Indulkar, D.P. Kothari, K. Ramalingam, "Power	2010
2	System Transients," 2 nd edition PHI	2010
3	Lou van der Sluis, "Transients in Power Systems" Wiley	2001
4	Transmission Line Reference Book, EPRI, USA.	2006

Classical books:

1	Allan Gr.wood, " <i>Electrical Transients in power Systems</i> ," Wiley Iterscience.	1991
2	R Rudenterg, " <i>Electric Stroke waves in power systems</i> ," Harvard University press, Cambridge, Massachusetts.	1968
3	L.V Bewley, " <i>Travelling waves on transmission system</i> ," power publications Inc. New York.	1993
4	Gonen, T., "Electric Power Transmission System Engineering: Analysis and Design", Wiley.	1988

MOOCs and online contents on this course are available at:

1) Transients on transmission line, coordinated by IIT Kanpur, NPTEL (*http://nptel.ac.in/courses/108104087/65*)

2) Transients stability analysis, coordinated by IIT Madras, NPTEL

(http://nptel.ac.in/courses/108106026/7)

Course Name	:	Microcontroller And PLC
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures:-14 Total No. Lab Hours:-14

Course Objectives:

The main objectives of this course are:		
1.	To deliver knowledge of various types of controllers used in design and	
	development of intelligent system.	
2.	To learn the development of microcontrollers based hardware system.	

Course Contents:

Sr.No	Course Contents N		
A. MICR	OCONTROLLER		
1	Introduction :		
	8051 microcontroller, The 8051 Pin Diagram,8051 Architecture,	2	
	Functional Aspect of 8051 Architecture.		
2	Software Concept of Microcontroller:		
	Microcontroller programming, Data Transfer Operation, Arithmetic	2	
	operations, Logical Operations, Jump and Branching Operations,	2	
	Assembly and C language.		
3	Integration of Hardware & Software:		
	Interfacing Concept of 8051, Analog Interfacing, Digital Interfacing,	2	
	ADC Interfacing, DAC Interfacing		
4	Case Studies:		
	Voltage Measurement, LED Glowing, Fluid Tank level Control	2	
	,Intelligent Project Design & Development		
B. PLC			
1	Introduction:		
	Programmable Logic Controller, Difference betw. Computer and	1	
	PLC, Basic Structure of PLC		
2	Assembly Languages Program Instructions :		
	Ladder Logic Program, PLC Ladder Program Symbols, PLC Ladder	2	
	Programming, Conventions of PLC Ladder Diagram, Programming	4	
	Equipment, Programming Formats		
3	Implementation of PLC Logic functions:		
	Latching, Timers & Time Delay using PLC, Shift registers, Internal		
	relays & Counters, Master and Jump Control, Data Handling.		
4	Integration of Hardware and Software:		
	Selection of PLC, SCADA System, HMI System, Case studies,	1	
	WiperMotion Control.		

Lab Work:

Sr.No	Lab contents	No. of Hours
1	Design and prepare algorithm for microcontroller based application using	8
	sensors and other interfacing peripheral and implement on hardware	
2	Design and simulate experiment using any PLC simulation software and	6
	implement on hardware	

Course Outcomes:

At the end of the course, students will have:	
1	After going through this course students will be able to apply their knowledge to
	design and develop intelligent systems.
2.	An in-depth knowledge of applying the concepts on real-time applications

Bibliography:

S.No		Year of Publication/Reprint
1	Tilak Thakur, "Microcontroller and PLC (Chapter 8 & 9) of Mechatronics," Oxford University Press	2015
3	Ali Mazidi, "The 8051 Microcontroller and Embedded Systems," Pearson.	2011
5	W.Bolton Programmable Logic Controller	2006

Classical books:

1	Ayala, "The 8051 Microcontroller Architecture, Programming & Application," Themson Publications.	1996
2	John W. Web Programmable Logic Controller	1995

MOOCs and online contents on this course are available at:

1) Programmable logic controller, Coordinated by IIT Guwahati, NPTEL (*http://nptel.ac.in/courses/112103174/13*)

2) Shrikrishna N. Joshi, "Mechatronics and Manufacturing Automation," IIT Guwahati, NPTEL (*http://nptel.ac.in/courses/112103174/*)

Program Elective IV – E4

Course Name	:	Power System Reliability
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. of Lectures-21

Course Objectives:

The main objectives of this course are:	
1.	To understand the fundamentals of reliability and its application to transmission
	system, distribution system, substation, HVDC systems.
2.	To exercise the reliability concepts/methods for various power system problems.

Course Contents:

Sr No.	Course Contents	No. of Lectures
1.	Basic Reliability Theory: Reliability concepts – exponential distributions – meantime to failure – series and parallel system – MARKOV model – recursive technique. Generator system reliability analysis – probability models for generators unit and loads – reliability analysis of isolated and interconnected system – generator system cost analysis – corporate model – energy transfer and off peak loading.	7
2.	Transmission System reliability analysis: Composite generation and transmission systems, introduction, radial configurations, conditional probability approach, network configurations, state selection, system and load point indices, application to practical systems, data requirements for composite system reliability evaluation.	6
3.	Distribution System reliability analysis (radial, parallel and meshed) : Distribution systems – basic techniques and radial networks, introduction, evaluation techniques, additional interruption indices, application to radial systems, effect of lateral distributor protection, effect of disconnects, effect of protection failures, effect of transferring loads, probability distributions of reliability indices, distribution systems-parallel and meshed networks, introduction, basic evaluation techniques, inclusion of busbar failures, inclusion of scheduled maintenance, temporary and transient failures, inclusion of weather effects, common mode failures, common mode failures	8

Course outcome:

At the completion of this course, students will be able to:		
1.	Apply the fundamentals of reliability to generation, transmission and distribution	
	system	
2.	Exercise the reliability concepts/methods for various power system problems	
Sr. No		Year of Publication/R eprint
-----------	---	------------------------------------
1	Ali Chowdhury and D. Kova, "Power Distribution System Reliability: Practical Methods and Applications," Wiley IEEE	2011

Classical books:

1.	Roy Billinton Ronald N Allan, " <i>Reliability Evaluation of Power Systems</i> ," 2 nd edition	1992
2.	, J. Endrenyi, "Reliability Modeling in Electrical Power System,"	1979
3.	RoyBillinton, Ronald N Allan, " <i>Reliability evaluation of engineering</i> system,"	1983

MOOCs and online contents on this course are available at:

1) Introduction to Reliability, coordinated by IIT Madras, NPTEL (*http://nptel.ac.in/courses/114106037/40*)

(nup://npiei.ac.in/courses/114100057/40)

2) System Reliability, coordinated by IIT Madras, NPTEL

(http://nptel.ac.in/courses/114106041/25)

Course Name	•	Restructured And Deregulated Power Systems
Course Code	••	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Total No. Lectures:- 14 Total No. Lab Hours:- 14

Course Objectives:

The ma	The main objectives of this course are:				
1.	The student should be able to acquire knowledge of various issues in Indian Power				
	Sector, power system de-regulation.				
2.	To understand restructuring, market reforms, transmission planning and pricing				
	issues.				

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Deregulation of Electricity Supply Industries	3
	Introduction to deregulation, different entities in deregulated electricity	
	markets, background of deregulation around the world, benefits from	
	competitive electricity markets, different key issues of competitive	
	electricity markets, market Clearing Price(MCP) - Market operations:	
	Day-ahead and Hour-Ahead Markets, Elastic and Inelastic demand,	
	technical challenges, Power System Restructuring and electricity reforms	
	in India, key features of electricity act 2003, introduction to various	
	institutions in Indian power sector such as CEA, CERC.	
2.	Market Models	3
	Market Models based on energy trading, contractual agreement: Pool &	
	Bilateral models, different independent models, role of ISO, market	
	power, Bidding and auction mechanisms, market models in Indian	
	market context and power trading in India, restructuring models of	
	different countries – UK, California, New Jersey, Australia	
3.	Transmission Open Access and pricing issues	4
	Power wheeling, transmission open access, cost component in	
	transmission pricing, basic objectives, different methods of transmission	
	pricing, principles of ATC determination, factors affecting ATC, static	
	and dynamic ATC, static ATC determination using DC power transfer	
	distribution factors, AC power transfer distribution factors, ATC with	
	line outage contingencies.	
4.	Transmission congestion management	4
	Transmission congestion, impact of transmission congestion, different	
	methods of congestion management, financial transmission right, flow	
	gate rights, market power and congestion issues, numerical examples,	
	international experiences of transmission congestion management.	

Lab Work:

S.No	Lab contents	No. of Hours
1	Load flow analysis using NR method in MATLAB, LMP calculations	14
	using Optimal power flow for congestion management & Transmission	
	Pricing using power flow by different methods	

Course Outcomes:

At the end of the course, students will have:			
1	Knowledge of various issues in Indian Power Sector.		
2	Power system de-regulation, restructuring, market reforms.		
3	Transmission planning and pricing issues.		

Bibliography:

S.No		Year of Publication/Reprint
1	LaiLio Lee, " <i>Power System restructuring and deregulation</i> ," John Wiley and Sons, UK	2001
2	BhattacharyaK, Bollen MHT and DoolderJC, "Operation of Restructured Power Systems," Kluwer Academic Publishers, USA	2012
3	ShahidehpourM et al, " <i>Market Operations in Electric Power</i> <i>Systems</i> ," John Wiley and Sons	2002
4	PhilipsonLorrin, WillisHLee, "Understanding electric utilities and de-regulation," Marcel Dekker Pub	2006

Classical books:

1	IlicM,	"Power	Systems	Restructuring-Engineering	and	1998
	LCONON	ucs, Kuv	ver mit. Se			

MOOCs and online contents on this course are available at:

1) Restructured power systems, coordinated by IIT Delhi, NPTEL (*http://nptel.ac.in/courses/108101005/*)

Course Name	:	Energy Management and Energy Auditing
Course Code	••	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. of Lectures-21

Course Objectives:

The main objectives of this course are:					
1.	To learn the fundamentals of energy management, strategies and planning.				
2.	To learn energy conservation and recycling, energy monitoring and targeting,				
	material and energy balance.				

Course Contents:

Sr No.	Course Contents	No. of Lectures
1.	Energy Management Centers and Their Functions, Architectures, recent Developments	2
2.	Characteristics of Power Generating Units and Economic Dispatch	3
3.	Unit Commitment (Spinning Reserve, Thermal, Hydro and Fuel Constraints); Solution techniques of Unit Commitment	2
4.	Generation Scheduling with Limited Energy	2
5.	Energy Production Cost – Cost Models, Budgeting and Planning	3
6.	Interchange Evaluation for Regional Operations, Types of Interchanges Exchange Costing Techniques.	3
7.	Demand side management	2
8.	Power Quality, Measurement, Energy Efficiency Audit and Analysis	4

Course outcome:

At th	e completion of this course, students will be able to:
1.	Apply the fundamentals of energy management, strategies and planning, energy
	conservation and recycling.
2.	Apply the fundamentals of Energy monitoring and targeting, material and energy
	balance and can also be capable of performing energy audit in the various types of
	systems.

Sr. No		Year of Publication/Re print
1.	Gr., J. N, Wilson, R, "Control and Automation of Electric Power Distribution Systems", Taylor and Francis.	2007
2.	Turner, W. C, " <i>Energy Management Handbook</i> ", 5 th Edition, 2004	2004
3.	John D Mc Donald, " <i>Electric Power Substation Engineering</i> ", CRC press, 2001.	2001

4.	Wood, A. J and Wollenberg, B. F, " <i>Power Generation Operation and Control</i> ", 2 nd Edition John Wiley and Sons, 2003.	2003
5.	S.C.Tripathy, <i>"Electrical Energy utilization and energy conversion,"</i> Tata Mc-GrawHill	2003
6.	S.B.Pandya, "Conventional energy technology," Tata Mc-GrawHill	2003

Classical books:

1.	Handschin, E. "Real Time Control of Electric Power Systems", Elsevier.	1972
2.	Handschin, E. "Energy Management Systems", Springer Verlag.	1990

MOOCs and online contents on this course are available at:

1) Energy Management Systems and SCADA, Coordinated by IIT Madras, NPTEL (*http://www.nptel.ac.in/courses/108106022/*)

2) Power system Generation, Transmission and Distribution (Optimal Unit Commitment), coordinated by IIT Delhi, NPTEL (<u>http://nptel.ac.in/courses/108102047/33</u>)

Power Electronics

Semester I

Soft Computing

Course Name	:	Internet of Things
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	1-3

Total no. of lectures: 14 Total no. of Lab hrs. : 14

Course Objectives:

The ma	ain objectives of this course are:
1.	Understand core technology, applications, sensors used and IOT architecture along with
	the industry perspective.
2.	Principles and operations of different types of sensors commonly used on mobile platform
	will be taught in a manner that by the end of the course the students will be able to design
	and implement real time solutions using IOT.

Course Contents:

S.No.	Course Contents	No. of
		Lectures
	Introduction to IoT	
	What is IoT, how does it work? Difference between Embedded device and IoT	2
1	device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT	_
	Solution Architecture Models, Major IoT Boards in Market	
	Setting Up Raspberry/Arduino to Create Solutions	
	Explore Raspberry Pi, Setting up Raspberry Pi, Showing working of Raspberry	3
2	Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand	5
	Actuators and MEMS	
	Communication Protocols used in IoT	
	Types of wireless communication, MajorwirelessShort-	
3	rangecommunicationdevices, properties, comparison of these devices (Bluetooth,	3
5	WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices,	
	properties, comparison of these devices (Cellular IoT,LPWAN)	
	IoT Applications	
4	Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city,	3
T	smart grid, , connected car, connected health(digital health, telehealth,	5
	telemedicine), smart retail	
	Sensors:	
	Applications of various sensors: Google Maps, Waze, Whats App, Ola	
5	Positioningsensors: encoders and accelerometers, Image sensors: cameras,	
	Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor	3
	localization systems,	5
	Motion&OrientationSensors:Accelerometer,Magnetometer,ProximitySensor,	
	GyroscopeCalibration, noise modeling and characterization and-noisefiltering	
	and sensor data processing. Privacy & Security	

Lab Work:

Sr. No.	Lab contents	No. of Hours
2.	Design and build systems that will use sensors, communication protocol and actuators.	14

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Understand concept of IOT and ability to implement in real time scenarios
2.	Design solutions based on IOT architecture and applications in various fields
3.	Critically analyze security and privacy issues in IOT
4.	Apply knowledge to Design and develop
	variousapplicationsofsensorsinIndustrial, healthcare, commercial, and building automation

Bibliography:

S.No.	Book Detail	Year of Publishing
1	Vijay Madisetti and ArshdeepBahga, Internet of Things (AHands-on Approach), 1st Edition, VPT	2014
2	Francis daCosta, Rethinking the Internet of Things: A ScalableApproach to Connecting Everything, 1stEdition, Apress Publications	2013
3	CunoPfister, Getting Started with the Internet of Things, OReillyMedia	2011
4	Kyung, CM., Yasuura, H., Liu, Y., Lin, YL., Smart Sensorsand Systems, Springer International Publishing	2015

MOOCs on this course are available at:

- 1) Introduction to Internet of Things https://www.edx.org/course/introduction-to-theinternet-of-things-iot
- 2) IoT Programming and Big Data -https://www.edx.org/course/iot-programming-bigdata-curtinx-iot4x

Course Name	:	Machine Learning
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	4-6

Total no. of lectures: 14 Total no. of lab hrs: 14

Course Objectives:

	The main objectives of this course are:
4.	To formulate machine learning problems corresponding to different applications.
5.	To understand a range of machine learning algorithms along with their strengths and weaknesses.
6.	To develop reasoning behind Model selection, model complexity, etc.

Course Contents:

S.No.	Course Contents	No.	of
		Lectu	ires
	BASICS OF MACHINE LEARNING:		
	Applications of Machine Learning, processes involved in Machine		
1	Learning, Introduction to Machine Learning Techniques: Supervised	3	
	Learning, Unsupervised		
	LearningandReinforcementLearning,ReallifeexamplesofMachineLearning.		
	SUPERVISED LEARNING:		
	Classification and Regression: K-Nearest Neighbour, Linear		
2	Regression, Logistic Regression, Support Vector Machine (SVM),	6	
	Evaluation Measures: SSE, MME, R2, confusionmatrix, precision, recall, F-		
	Score,ROC-Curve.		
	UNSUPERVISED LEARNING:		
3	Introductiontoclustering, Types of Clustering: Hierarchical-	5	
	AgglomerativeClustering and Divisive clustering; Partitional Clustering -	3	
	K-means clustering, Principal Component Analysis, ICA.		

Lab Work:

S.No.	Lab Contents	No. of
		hours
1	Python Introduction: Loops and Conditions and other preliminarystuff, Functions, Classes and Modules, Exceptions, Database access, Mathematical computing with Python packages like: numpy, Mat- plotLib,pandas Tensor Flow, Keras	8
2	Application Oriented Project Work	6

Course Outcomes:

At the	At the completion of this course, students will be able to:	
1.	Design and implement machine learning solutions to classification, regression and clustering problems	
2.	Evaluate and interpret the results of the different ML techniques	
3.	Design and implement various machine learning algorithms in a range of Real-world applications.	
4.	Use Python for various applications.	

Bibliography:

S.No.	Book Detail	Year of Publishing
1.	Tom Mitchell, Machine Learning, McGraw Hill,	2017
2.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer,	2011.
3.	T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e,	2008.
4.	Yuxi (Hayden) Liu, "Python Machine Learning By Example", Packet Publishing Limited	2017

MOOCs on this course are available at:

- 1) Data Science: Machine Learning -https://www.edx.org/course/data-science-machinelearning
- 2) Machine Learning https://www.coursera.org/learn/machine-learning

Design of Experiments and Research Methodology

Course Name	:	Design of Experiments and Research Methodologies
Course Code	:	
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28

Total No. of Lab hrs. 28

Course Objectives:

The students should be able to develop an understanding of how to identify research topics, formulate research questions / hypotheses, select an appropriate research and, where applicable, experimental design. Provides a basis so the student can effectively develop a research proposal for either a capstone project, master's thesis, research project, or designed experiment.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction: Types of Research and Their Purposes, Locating,	3
	Analysing, stating and evaluating research problem, need for literature	
	review, steps in conducting literature review, Strengths, Weaknesses,	
	Opportunities, and Threats (SWOT) analysis, research questions and	
	hypothesis, types of hypothesis, evaluation of hypothesis.	
2.	Research Design and Sampling Design: Concept of research design,	2
	features of a good research design, concept of population and sample,	
	characteristics of sample design, types of sampling techniques	
3.	Methods of data collection and measurement: Primary data and	3
	Secondary data, data collection techniques: observation, interview,	
	questionnaires, schedules, case-study, levels of measurement, problems in	
	measurement in research – validity, reliability.	
4.	Statistical Methods of Analysis: Descriptive statistics: mean, median,	4
	mode, range, mean deviation and standard deviation, regression and	
	correlation analysis, inferential statistics: t-tests, Chi-square tests.	
	Correlation (rank difference and product moment), Analysis of variance	
	(ANOVA) (one way)	
5.	Procedure for writing a research report and manuscript: Types of	2
	research reports, steps of writing a report, layout of report, layout of	
	research paper, ethical issues related to publishing, Plagiarism and Self-	
	Plagiarism.	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Select a problem from your area of interest, identifying the type of research	4
	problem it is and perform the SWOT analysis of the existing literature.	
2.	Generate research questions and hypotheses for a problem from your area	4
	of interest.	
3.	Identify the population and sample for the study (highlighting the	4
	technique used for sample selection) for a problem from your area of	

	interest.	
4.	Design a questionnaire for the problem of interest.	4
5.	Utilizing software such as Statistical Package for the Social	6
	Sciences(SPSS), Mini Tab, etc. for the statistical analysis of the results	
	obtained for the desired questionnaire.	
6.	Preparing a research paper for the problem of interest	6

Course Outcomes:

-			
At the e	At the end of the course, students will be able to:		
1.	Develope an understanding of how to identify research topics, formulate research		
	questions and corresponding hypotheses, select an appropriate research and where		
	applicable, experimental design.		
2.	Perform required statistical analyses for any univariate application in a business /		
	industrial setting, regardless of data form, and will be familiar with major indices for		
	measuring correlation and association.		
3.	Further, the underlying assumptions related to each statistical test and its		
	interpretation will be thoroughly reviewed.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Probability and Statistics for Engineers and scientists by Anthony J. Hayter, Cencage Learning, 4th Edition	2016
2.	Probability and Statistics for Engineers and scientists by Walpole, Myers, Myers and Ye, 8th ed Pearson Education	2007
3.	Research Methodology - Methods and Techniques, C. K. Kothari, New Age International, 2nd Edition	2004
4.	English for writing research papers by Adrian Wallwork, 2nd Edition. Springer	2016
5.	Statistics: Concepts and Controversies by David S. Moore, William I. Notz, W. H. Freeman	2016

Available MOOCS:

1. https://www.coursera.org/learn/research-methods

2. https://www.lawctopus.com/certificate-course-on-research-methodology-online/

Program Core I

Course Name	:	Modern Control Systems
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. of Lectures – 28 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
1.	To learn the modeling concepts of system, modelling using state space.
2.	Tolearn and implement the optimal control techniques.
3.	To design the digital control system and nonlinear systems.

Course Contents:

Sr No.	Course Contents	No. of Lectures
1	Introduction: Control systems design requirements, classical versus modern approaches of design	2
2	State Space Representation: Concepts related to state space, state space representation, state transition matrix, solution of linear time invariant and linear time varying state equations, canonical forms	3
3	Control System Design in State Space: Controllability, pole placement design using full state feedback-regulator and tracking systems, observers, observability and compensators, full order and reduced order observers	6
4	Linear Optimal Control : Optimal control problem, infinite time linear optimal regulator design, optimal control of tracking systems (Riccati equation based designs).	6
5	Digital Control Systems: Basic concepts, z-transform, stability, performance, state space modeling and solution of linear digital equations, design using pole placement,: regulators and observers and compensators, linear optimal control of digital systems.	7
6	Nonlinear Control Systems: Sources of nonlinearities and characteristics of nonlinear systems, describing function method, phase plane analysis, Lyapunov stability theory.	4

Lab Work:

Sr. No.	Lab Contents	Lab Hours
1	State space modeling of continuous time system and study of stability and state and output responses	2
2	Pole placement design using state feedback for regulator and tracking systems	2
3	Full and reduced order observer design	2

4	State space modeling of discrete time system and study of responses	2
5	Pole placement design for regulator and tracking discrete time systems	2
6	Observer design for discrete time systems	2
7	Describing function analysis of nonlinear systems	2
8	Phase plane analysis of nonlinear systems	2
9	Project 1	4
10	Project 2	4
11	Project 3	4

Course Outcomes:

By the end of this course, the student will be				
Dyth				
1	able to apply the modeling concepts of system modeling using state space and			
1	understand the design issues in the framework of modern control.			
2	conversant with the optimal control techniques.			
3	conversant with the concepts of digital control system and non-linear systems.			

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	A.Tewari, <i>Modern Control Design with MATLAB and Simulink</i> . JohnWiley and Sons Ltd.	2002		
2	K. Ogata, Modern Control Engineering.PHI.	2014		
3	M. Gopal, <i>Modern Control System Theory</i> . New Age International (P) Ltd.	2005		
4	M.Gopal, Digital Control and State Variable Methods. TMH.	2003		
5	W. L. Brogan, Modern Control Theory. Pearson Education India.	2011		

MOOCs on this course are available at:

- 1) Lecture Series On Control Engineering, Prof. Sd Agashe, IIT Bombay: nptel.iitm.ac.in.
- 2) 2)Introduction to Control System Design A First Look, Jacob White, Joe Steinmeyer, MIT,

https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x

- 3) Non-linear systems, Slotine, MIT, <u>http://web.mit.edu/nsl/www/videos/lectures.htm</u>
- 4) J. White and J. Steinmeyer, *Introduction to State Space Control*, MIT, EDX

Program Core II

Course Name	:	Power Electronic Devices And Controllers
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures:-28 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
1.	To learn and apply the concepts of power electronic converters (AC-DC, DC-AC, DC-
	DC and AC-AC) using power electronic devices.
2.	Utilize the concepts power processing and their applications.
3.	Apply theacquired knowledge in contemporary research areas

Course Contents:

Sr.No	Course Contents	
		Lectures
	Power Electronic Devices	
1.	Review of power switching devices, switching and I-V characteristics.	3
	Triggering and Protection circuits	
	AC- DC Conversion circuits	
	Review of AC-DC Power Converters. Output Voltage and Source	
2.	Current Analysis (THD, DPF, PF). Definitions of Fundamental Real	6
	Power (P) and Reactive Power (Q) of converters and associated VAR	
	Diagrams. Effect of Source Inductance on output voltage.	
	DC- AC Conversion circuits	
	1- Ø and 3- Ø bridge inverters, Voltage Control of Three Phase Inverters:	
	Review of PWM Techniques. Space Vector Modulation (SVM).	
	Relationship between PWM and SVM. Comparison of Various PWM	
3.	Techniques.	8
	Multilevel Inverters: Introduction and Basic Concept, Types of	
	Multilevel Inverters (Diode Clamp, Flying Capacitor, Cascaded),	
	Switching Device Currents, DC- Link Capacitor Voltage Balancing.	
	Features of Multilevel Converters.	
	DC-DC Switch Mode Converters	
	Introduction to DC-DC Converters, Control of DC-DC Converters, Buck	<i>.</i>
4.	Converter, Boost Converter, Buck-Boost Converter, Cuk Converter, Full	6
	Bridge DC-DC Converter. Forward, Push-Pull and Fly back converters.	
	Comparison of DC-DC Converters.	
	AC- AC Conversion circuits	
	Single and three phase Fully and Hall controlled Regulator. Analysis of	
5	Veriente Analysis and Characteristics of 20 December Dalta	5
5.	Connected Arrangement of three 10 Degulators (helf and fully)	3
	controlled) Delta and Star Connected Load Comparison of 20	
	Pagulators	
	Negulators.	

Static Power Frequency Changers: Operational features and Operating	
Principles. Mathematical Representation (output voltage and Input	
Current) of Static Frequency Changers. Synthesis of the Output Voltage	
Waveform, Control of the Output Voltage.	

Lab Work:

Sr.No	Lab contents	No. of Hours
Perform	ance Evaluation and Analysis of following power electronic converters	
through	Simulation/ Experimentation	
1.	Half and full-wave 1-phase controlled rectifier.	2
2.	Half and full-wave 3-phase controlled rectifier.	2
3.	Twelve-pulse converter.	2
4.	24-pulse converter.	2
5.	48-pulse converter.	2
6.	Buck, boost, buck-boost converters.	4
7.	Single-phase and 3-phase ac voltage controllers.	2
8.	Single-phase inverter with different modulation techniques.	2
9.	Three-phase inverter with different modulation techniques.	4
10.	SVM 3-phase inverter.	2
11.	Multilevel Inverters	4

Course Outcomes:

	At the completion of this course, students will be able to:
1.	Apply the concepts of power electronic converters (AC-DC, DC-AC, DC-DC and AC-
	AC) using power electronic devices.
2.	Apply the concepts power processing and work on their applications.
3.	Carry-out contemporary research areas by theacquired knowledge of convertors

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	M. H. Rashid, <i>Power Electronics: Circuits, Devices and Applications</i> , PHI.	2014 / 4E
2.	N. Mohan, T.M. Undeland and W.P.Robbins, <i>Power Electronics: Converters Applications and Design</i> , John Wiley & Sons.	2006
3.	R.S. Ramshaw, <i>Power Electronic Semiconductor Switches</i> , Chapman and Hall.	1994
4.	Marian K Kazimierczuk, Pulse-width Modulated DC–DC Power Converters, John Wiley & Sons.	2008
5.	R.W. Erickson and D. Maksimovic, <i>Fundamentals of Power Electronics</i> , KLUWER Academic Publishers.	2004
6.	I. Batarseh and A. Harb. <i>Power Electronics: Circuit Analysis and Design</i> . Springer.	2017
7.	D.W. Hart, <i>Power Electronics</i> . Tata McGraw-Hill Education.	2011

Classical Books:

8.	G. Seguier, C. Rombaut and R. Bausiere, <i>Power electronic</i> <i>Converters: Volume 2 AC-AC Conversion</i> , North Oxford Academic Publishers.	1987
9.	L. Gyugyi and B.R.Pelly, <i>Static Power Frequency Changers</i> , John Wiley and Sons 1976.	1976
10.	W. Mc Murray, <i>Theory and Design of Cycloconverters</i> , The MIT Press 1972, ISBN 0-262-13081-5.	1972
11.	B.R. Pelly, <i>Thyristor Phase Controlled Converters and Cycloconverters</i> , John Wiley & Sons	1971
12.	B.D. Bedford and R.G. Hoft, <i>Principles of Inverter Circuits</i> , John Wiley and Sons.	1964

MOOCs on this course are available at:

1. Dr. K. Afridi, Dr. R. Erickson, Dr. D. Maksimovic, *Power Electronics Specialization*, University of Colorado, Coursera

Program Elective I – E1

Course Name	:	DC Controllers
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures- 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn and apply the concepts of DC converters using power electronic devices.
2.	Utilize the concepts the students will be able to carry out harmonic reduction using
	different techniques.
3.	To learn about DC-DC switch mode converters

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	AdvancedAC- DC Conversion circuits Introduction to multi-pulse methods for reduction of harmonics: Principle of cancellation of harmonics, determination of phase shift and vector representation. Analysis of 12 pulse converter (Wye-Wye and Wye- Delta) configuration for 30 degree phase shift. Introduction to PWM reactifiers: Power factor corrected reactifiers	7
2.	Advanced DC-DC Switch Mode Converters Small-signal Models of PWM Converters for CCM and DCM.Open-loop Small-signal Characteristics of Boost Converter for CCM. Voltage-mode Control of Boost Converter. Current-mode Control.	7

Lab Work:

Sr.No	Lab contents	
		Hours
1.	To Obtain the performance of 12 pulse AC-DC Converter using Y-Y and Y- Δ transformers.	2
2.	To Obtain the performance of 12 pulse AC-DC Converter using zigzag transformers.	2
3.	To Obtain the AC and DC side performance of single phase PWM rectifier	2
4.	To Obtain the AC and DC side performance of three phase PWM rectifier	2
5.	To obtain current and voltage mode control of boost converter.	2

Course Outcomes:

	At the completion of this course, students will be able to:
1.	Use power electronic devices for designing the DC converters.
2.	Carry out harmonic reduction using different techniques and DC-DC switch mode
	converters

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	M.K. Kazimierczuk, <i>Pulse-width Modulated DC–DC Power Converters</i> , John Wiley and Sons.	2008
2.	Derek A Paice, <i>Power Electronic Converter Harmonics</i> (<i>Multipulse methods for Clean Power</i>) IEEE Press.	1995
3.	R.W.Erickson and D. Maksimovic, <i>Fundamentals of Power Electronics</i> , KLUWER Academic Publishers.	2004
4.	C.C. Marouchos, Christos C. <i>The Switching Function: Analysis of Power Electronic Circuits</i> . Vol. 17.	2006
5.	D.W. Hart. Power Electronics. Tata McGraw-Hill Education.	2011

MOOCs on this course are available at:

1. Dr. R. Erickson, Convertor Control, University of Colorado, Coursera

Course Name	:	AC Controllers
Course Code	:	
Credits	:	1.5
LTP	:	2 -0- 2
Segment	:	1-3

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	The basics about the AC controllers for the use in various practical applications

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Static Power Frequency Changers Implementation of Modulating Functions. End Stop Control, Control of UDFFC, NCC and CDFFC. Application of Static Frequency Changers: Speed Control of AC Machines, Constant Frequency Power Supplies and Static VAR Generators.	4
2.	PWM Inverters (DC-AC Conversion) Review of PWM and Space Vector Modulation (SVM). Current controlled VSI.SVM of three level inverter. Methods of Harmonic Reduction. Current Source Inverter, Variable DC Link Inverter, Boost Inverter. Applications of Multilevel Inverters: Reactive Power Compensation, Back to Back Intertying and Adjustable Speed Drives. Resonant Pulse Inverters: Introduction, Series and Parallel Resonant Inverters, ZVS and ZCS Resonant Converters.	10

Lab Work:

Sr.No	Lab contents	No. of
		Hours
1.	To obtain the performance of different types of PWM techniques for three phase inverter.	2
2.	To obtain the performance of Space Vector modulated three phase inverter.	2
3.	To obtain the performance of cascaded H-Bridge multilevel inverter.	2
4.	To obtain the performance of ZVS and ZCS switched three phase inverters.	2
5.	To obtain the performance of Space Vector modulated three level inverter.	2

Course Outcomes:

	At the completion of this course, students will be able to:
1.	Apply the concept of AC controllers / regulators, static frequency changer, PWM
	inverters (DC-AC conversion) in single phase and three-phase circuits,
2.	Will be able to reduce harmonis in various AC regulators
3.	Design AC regulators and multi-lever invertors

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	M. H. Rashid, <i>Power Electronics: Circuits, Devices and Applications</i> , PHI.	2014 / 4E
2.	P.S. Bhimra, <i>Power Electronics</i> , Khanna Publications	2012
3.	IEEE research papers on multilevel inverters	

Classical Books:

1.	L. Gyugyi and B.R.Pelly, <i>Static Power Frequency Changers</i> , John Wiley and Sons.	1976
2.	G. Seguier, C. Rombaut and R. Bausiere <i>Power electronic Converters: Volume 2 AC-AC Conversion</i> , North Oxford Academic Publishers.	1987
3.	W. Mc Murray, <i>Theory and Design of Cyclo-converters</i> , The MIT Press.	1972
4.	B.R.Pelly, <i>Thyristor Phase Controlled Converters and Cycloconverters</i> ", John Wiley and Sons.	1971
5.	B.D. Bedford and R.G. Hoft, <i>Principles of Inverter Circuits</i> , John Wiley and Sons.	1964

MOOCs on this course are available at:

1. Dr. R. Erickson, Convertor Control, University of Colorado, Coursera

Course Name	:	Power Conditioning
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. of Lectures-21

Course Objectives:

	The main objectives of this course are:
1.	Develop understanding and apply various concepts of power conditioning and related
	terms such as harmonic generation and mitigation
2.	Transformation from 3 phase to single phase using two axis theory
3.	Learn about active power line conditioners
4.	Study the effect of harmonic in converters

Course Contents:

Sr	Course Contonts	No. of
No.	Course Contents	Lectures
1.	Harmonic Producing Loads, Mitigation and Power Supplies Compensation of arc furnace and traction loads. Microwave ovens, light and temperature controllers, power supplies for appliances such as camera, X- Ray equipments. Power supplies in Telecommunication systems, High frequency induction heating, Dielectric heating, Power supplies in automobiles.	4
2.	Power Definitions and Instantaneous Reactive Power Theory Concepts and Evolution of Electric Power Theory, Electric Power Definitions, Instantaneous Power Theory: Basis of the pq Theory, Clarke Transformation, pq theory application to 3φ -3 wire and 3φ -4 wire systems, Modified pq theory, Instantaneous abc theory. Comparison of pq theory and Instantaneous abc theory. Synchronous Reference Frame Theory and applications.	8
3.	Active Power Line Conditioners Passive filters and limitations, active filters for harmonic and reactive power compensation in two wire, three wire and four wire ac systems, Shunt Active Filter, Hybrid and Series Active Filters, Combined Series and Shunt Power Conditioners. Case studies on microcomputer and DSP control in active filters and power supplies.	9

Course outcome:

	At the completion of this course, students will be able to:
1.	Apply various concepts of power conditioning and related terms such as harmonic
	generation and mitigation
2.	Utilize two axis theory for transformation from 3 phase to single phase.
4.	Analyse the effect of harmonic in converters

Sr. No	Name of Book/ Authors/ Publisher	Year of Publication/Re print
1.	H. Akagi, E.H. Watanabe and M. Aredes, <i>Instantaneous power</i> <i>Theory and applications to Power Conditioning</i> , IEEE Press, John Wiley and Sons Incorporate.	2007
2.	J. Arrilaga, D.A. Bradley and P.S. Bodger, <i>Power System Harmonics</i> , John Wiley and Sons Ltd.	1995
3.	J. Arrilaga and N.R Watson, <i>Power System Harmonics</i> , John Wiley and Sons Ltd.	2003
4.	A.E. Emanuel, <i>Power Definitions and the Physical Mechanism of Power Flow</i> , IEEE Press, John Wiley and Sons Ltd.	2010
5.	P.S. Revuelta, S.P. Litrán, J.P. Thomas, <i>Active Power Line Conditioners: Design, Simulation and Implementation</i> , Elsevier publications, 2016.	2016

Program Elective II – E2

Course Name	:	Power Electronics Applications In Power Systems
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. Lectures - 21

Course Objectives:

	The main objectives of this course are:
1.	To highlight the requirements of modern transmission and distribution systems and
	specific power electronic solutions to realize them
2.	To analyze the transmission system behavior is analyzed in great detail in the basic
	and advanced courses on power systems

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Basics of FACTS Controllers Basics of flexible AC transmission systems, Controlled rectifier and energy storage plants, Tap changers and phase shifters, Thyristor controlled VAR compensation and series compensation.	7
2.	Modern (synchronous link converter) VAR compensators, Unified power flow controller (UPFC) and Interline power flow controller, Power electronics in power generation.	14

Course Outcomes:

	At the completion of this course, students will be able to:					
1.	The students in this course can apply the concepts of FACTS controllers fo	r				
	compensation in power systems					

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	N.G. Hingorani, G. Laszlo and E.H. Mohamed. Understanding FACTS: concepts and technology of flexible AC transmission systems. IEEE Press.	2000
2.	T.J.E. Miller, Reactive Power Control in Electric Systems WILEY.	2008
3.	R.M. Mathur and R.K. Varma, <i>Thyristor-BasedFacts Controllers for Electrical Transmission Systems</i> " IEEE Press.	2006

Engineering Mathematics

Course Name	:	FOURIER TRANSFORMS
Course Code	:	
Credits	:	01
LTP	:	2-1-0
Segment	:	1-2

Total No. of Lectures- 10 Tutorials -5

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the concept of Fourier transform and be able to compute it for
	standard examples.
2	To make the students able to apply Fourier transforms to solve differential equations and partial
	differential equations.

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Fourier Transforms: Fourier Integral formulas, Definition and examples, Basic properties, Fourier cosine and sine transforms and examples, Basic properties of Fourier cosine and sine transforms, Multiple Fourier transforms.	05
2	Fast Fourier Transforms and Short Term Fourier Transforms: Definition and examples, Basic properties, Applications.	05

Course Outcomes:

At the	At the end of the course, students will be able to:	
1	Solve differential equations by using Fourier transforms	
2	Solve partial differential equations by using Fourier transforms	
3	Apply FFT and STFT to engineering problems	

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Integral Transforms and Their Applications", Loknath Debnath, CRC	1995.
	Press, Inc.,	
2	"Integral Transforms and their Applications", Brian Davies, 3rd	2001
	Edition, Springer-Verlag, New York, Inc,	
3	"Fourier Transform and Its Applications", Ronald N. Bracewell, 2nd	1986
	Edition, McGraw-Hill Inc., US,	

Course Name	:	NUMERICAL METHODS
Course Code	:	
Credits	:	01
LTP	:	2-0-2
Segment	:	3-4

Total No. of Lectures – 10 Practicals -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the basics of numerical methods.
2	To make the students able to solve problems on system of linear equations and Interpolation by
	numerical methods.

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Error Analysis: Definition and sources of errors, Propagation of errors, Floating-	02
	point arithmetic and rounding errors.	
2	Interpolation: Interpolation using Finite differences, Numerical Differentiation	04
	and Numerical integration, Trapezoidal and Simpson's rules.	
3	Numerical Solution of Differential Equations: Picard's method, Taylor series	04
	method, Euler and modified Euler methods, Runge-Kutta methods, Predictor-	
	Corrector method.	

Lab Work:

Sr.No	Lab. Contents	No. of
		nouis
3.	Solving Interpolation, Numerical Differentiation and Numerical integration	04
	problems using Mathematica.	
4.	Solving Differential equations numerically using Mathematica.	06

Course Outcomes:

By the end of the course, the students will be able to solve the following by numerical methods:

- 4. Problems on Interpolation
- 5. Problems on Differentiation, Integration.
- 6. Solve differential equations.

Sr.No.	Name of Book / Authors / Publishers	Year of Publication/ Edition
1	"Introduction to Numerical Analysis", Atkinson K. E., John Wiley.	1989
2	"Applied Numerical Analysis", Gerald C. F. and Wheatley P. O., Pearson	2004
3	"Numerical Methods for Scientific and Engineering Computation", Jain M.	2004
	K., Iyengar S.R.K. and Jain R. K., New Age International Publisher.	
4	"Elements of Numerical Analysis", Gupta R.S., Macmillan India Ltd.	2008

Course Name	:	OPTIMIZATION TECHNIQUES AND GENETIC ALGORITHMS
Course Code	:	
Credits	:	01
LTP	:	2-0-2

Total No. of Lectures – 10,

Practicals -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the need of Optimization Techniques and develop the ability to
	form mathematical model of optimization problems.
2	To make the students able to identify and solve linear and non-linear models of optimization
	problemsusing Genetic Algorirhms.

Course contents:

Sr.No	Course Contents	No. of Lectures
1	Introduction to optimization problem, local and global optimum, conversion of a constrained problem to unconstrained problem.	04
2	Genetic Algorithms, Binary and Real coded Genetic Algorithms, Coding and decoding of variables, Key steps in a GA, starting population, fitness evaluation, reproduction, crossover, mutation, evaluation.	06

Lab Work:

Sr.No	Lab. Contents	No. of
		Hours
2.	Using Genetic Algorithms in various optimization Problems	10

Course Outcomes:

1	The students are able to form mathematical model of optimization problems .
2	The students are able to distinguish between linear and nonlinear models.
3	The students are able to solve simple problems using Mathematica/MATLAB

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Practical Genetic Algorithms", Haupt, R. L. and Haupt, S.E., John Wiley	1998
	&Sons	
2	"Genetic Algorithm in Search, Optimization and Machine Learning",	1989
	Goldberg, D.E., Addison Wesley.	
3	"Engineering Optimization", Ranjan, Ganguli, University Press.	2011

Semester 2
Soft Skills & Management

Course Name	:	Communication Skills
Course Code	:	
Credits	:	1.5
LTP	:	1-0-4
Segment	:	1-3

Total No. Tutorials-7 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
4.	To enhance competence in communication skills: verbal and nonverbal.
5.	To provide orientation in technical communication skills: spoken and written.
6.	To sensitize students to attitude formation and behavioural skills.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Communication Skills, Soft Skills and Interpersonal	1
	Communication	
2.	Speech: Structure, Elements, Content, Organization and Delivery, J-a-M	1
3.	Writing Skills: Letters, Minutes of Meeting	1
4.	Technical Report Writing: Concept and Structure	1
5.	Research Writing: Concept and Structural Framework	1
6.	Power Point Presentation: Project Presentation	1
7.	Interviews	1

Lab Work:

Sr.No	Lab contents	No. of Hours
11.	Self- Introduction	2
12.	Negotiation Skills & Role Play	2
13.	J-a-M Session	2
14.	Building Word Power through Reading	2
15.	Group Discussion and Case Study	4
16.	Writing Skills: Letters, Minutes of Meeting	2
17.	Technical Report Writing: Concept & Structure	4
18.	Research Writing: Concept and Structural Framework	4
19.	Power Point Presentation: Project Presentation	4
20.	. Interviews	

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	Show enhanced competence in communication skills and technical communication.		
2.	Develop awareness of attitude formation and behavioural appropriateness		
3.	Gain self-confidence and perform better in their academic and professional life.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Technical Communication", RamanMeenakshiand SharmaSangeeta,	2015
	Oxford University Press.	
2.	London.	2011
	"English Vocabulary In Use: Advanced+ CD", MichaelMcCarthy,	2004
3.	CUP, Cambridge.	
4.	"Advanced English Grammar", HewingsMartin, CUP, Cambridge.	2003
5.	"Study Listening", TonyLynch, CUP, Cambridge.	2004
6.	"Study Speaking", KennethAnderson, CUP, Cambridge.	2010
7.	"Study Reading", Glendenning H. Eric, CUP, Cambridge.	2004
8.	"Study Writing", HampLyons Liz & HeasleyBen, CUP, Cambridge.	2004
9.	"Study Skills in English", WallaceMichael J., CUP, Cambridge. 2004	

MOOCs on this course are available at:

1) "Take Your English Communication Skills to the Next Level". Available at Coursera (Offered by Georgia Institute of Technology), 4 weeks, Starts on September 10, 2018. https://www.coursera.org/learn/english-communication-capstone

2) "Effective Communication in Globalised Workplace- The Capstone". Available at Coursera (Offered by National University of Singapore), 3 weeks, Starts on August 06, 2018. https://www.coursera.org/specializations/effective-communication

Course Name	:	Management Entrepreneurship and IPR
Course Code	:	
Credits	:	1
LTP	:	0-2-0
Segment	:	4-5

Total No. Tutorials – 14

Course Objectives:

The ma	The main objectives of this course are:		
1.	To make students familiar with the concepts of Management, Entrepreneurship and		
	Intellectual Property Rights (IPRs).		
2.	To make students understand how to initiate a new Start-up and manage it		
	effectively.		
3.	To enable students to convert their innovative ideas into different forms of IPRs.		

Course Contents:

Sr.No	Course contents	
1.	Introduction to Management: Concepts and Principles of Management	
2.	Functions of Management: Planning Process - Hypothetical Planning of an Event/Activity, Form of Organization Structure - Case Study, Human Resource Planning and Process, Elements of Directing and Effective Control Mechanism, Activity: Role Playing/Management Game	4
3.	Introduction to Entrepreneurship: Concepts of Entrepreneurship and Characteristics of Entrepreneurs	1
4.	Development Phases of Entrepreneurship: Innovation and Idea Generation, Project Formulation and Validation (Feasibility Analysis), Business plan	2
5.	Ecosystem for Entrepreneurship Development: Government Schemes and Initiatives, Financial and Non-Financial Institutional Support, Legal Framework, Role of Incubator, Venture Capitalist, Angel Investor, Crowd Funding Accelerator etc.	2
6.	Intellectual Property Rights (IPRs): Concept and Relevance of IPRs, Process for filing IPR	2
7.	Different Forms of IPRs: Patents, Copyright, Trademarks, Industrial Designs and Geographic Indicator	2

Course Outcomes:

At the completion of this course, students will be able to:			
1.	Developand manage new project/Start-up.		
2.	Apply managerial skills for success of entrepreneurial/business venture.		
3.	3. Make effective use of IPR practices in their ventures.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1.	"Management Principles and Practice", Srinivasan R. and Chunawalla S.A., Himalaya Publishing House. 2017		
2.	"Introduction to Management", Schermerhorn John R. Jr. And Bachrach Daniel G., 13 th Edition, Wiley Publications	2016	
3.	"Principles & Practice of Management", Prasad L.M., 8 th Edition, Sultan Chand & Sons.	2015	
4.	"The New Era of Management", Daft R.L., 11 th Edition, Pubs: Cengage Learning.	2014	
5.	"Case Studies in Management", Pandey Chandra Akhilesh, 2 nd Edition, I.K. International Publishing House Pvt. Ltd.	2015	
6.	"Harvard Business Review: Manager's Handbook", Harvard Business School Press.	2018	
7.	"Entrepreneurship", Trehan Alpana, Dreamtech Press.	2016	
8.	"Entrepreneurship and Small Business" Schaper Michael, Volery Thierry, Weber Paull and Lewis Kate, 3 rd Asia-Pacific Edition, Wiley Publications	2018	
9.	"Harvard Business Review: Entrepreneur's Handbook", 1 st Edition, Harvard Business Review Press	2018	
10.	"Take Me Home", Bansal Rashmi, 1 st Edition, Westland.	2014	
11.	"Intellectual Property Law", Narayanan P., 3 rd Edition, Eastern Law House	2017	
12.	"Intellectual Property Rights", Pandey Neeraj and Dharni Khushdeep, PHI Learning	2014	
13.	"Intellectual Property Rights", Rosedar S.R.A., LexisNexis (Quick Reference Guide – Q&A Series)	2016	
14.	MSME Annual Publications (<u>www.msme.gov.in</u>)	Annual	
15.	WIPO Annual Publications (www.wipo.int)	Annual	

MOOCs on this course are available at:

- "Entrepreneurship: Do Your Venture", Available at edx (Offered by IIM Bangalore), Self-Paced (6 weeks). <u>https://www.edx.org/course/entrepreneurship-do-your-venture</u>
- 2) "Becoming an Entrepreneur", Available at edx (Offered by MIT), Self-Paced (6 weeks).

https://www.edx.org/course/becoming-entrepreneur-mitx-launch-x-4

- 3) "How to Build a Start-up", Available at Udacity, Self-Paced (One Month). https://in.udacity.com/course/how-to-build-a-startup--ep245
- 4) "Intellectual Property Rights: A Management Perspective, Available at edx (Offered by IIM Bangalore), Starts on 1 August 2018 (6 weeks). <u>https://www.edx.org/intellectual-property-rights-a-management-perspective</u>

Course Name	:	Professional Ethics
Course Code	:	
Credits		0.5
LTP		0-1-0
Segment		6-6

Total No. Tutorials -7

Course Objectives:

	The main objectives of this course are:
1.	To imbibe ethical values and understanding.
2.	To develop moral thinking that will help students to recognize their potential.
3.	To engage and motivate the students to perform ethically in their professional life.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Ethics: Concept of Ethics – Nature, Scope, Sources,	2
	Types, Functions and Factors influencing Ethics, Ethics in Engineering	
2.	Ethics in Profession: Concepts of Honesty, Integrity, Reliability, Risk,	2
	Safety and Liability, Responsibilities and Rights of Professionals,	
	Professional accountability.	
3.	Ethics and Business: Concept of Business Ethics – Nature and	1
	Objectives, Ethical dilemmas in business ethics.	
4.	Self-Development: Concept of Self-Assessment – SWOT Analysis,	2
	Self-Concepts, Self-Confidence, Self-Esteem, Managing Time and	
	Stress, Human values.	

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Demonstrate knowledge and better understanding of self and to manage time and stress
	effectively.
2.	Have subjective well-being.
3.	Have ethical decision making ability in their personal and professional life.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Professional Ethics", Subramaniam R., 2 nd Edition, Oxford University Press	2017
2.	"Introduction to Psychology", Kalat James W., 11 th Edition, Cengage Learning.	2017

2	"Business Ethics – Text and Cases", Murthy C.S.V., 1 st Edition,	2014
з.	Himalaya Publishing House.	
	"A Foundation Course in Human Values and	
4.	Professional Ethics", Gaur R.R., Sangal R. and	2010
	Bagaria G.P., Excel Books.	
	"Issues and Ethics in the Helping Professions", Corey G., Corey	2010
5.	M.S. and Callanan P., 8 th Edition, Brooks/Cole, Cengage	
	Learning.	
6	"The Curse of Self: Self-awareness, Egotism and the Quality of	2007
υ.	Human Life", Leary M.R., 1 st Edition, Oxford University Press.	
7.	"Business Ethics", Hartman L.P. and Chatterjee A., 3 rd Edition,	2006
	Tata McGraw Hill.	
Q	"Business Ethics and Professional Values", Rao A.B., Excel	2006
0.	Books.	
0	"Business Ethics - Concepts and Cases", Velasquez M.G.,	2001
9.	5 th Edition, Prentice Hall.	
10	"Theories of Personality", Hall C.S., Lindzey D. and Cambell	1997
10.	J.B., 4 th Edition, Hamilton Printing Company.	

MOOCs on this course are available at:

- "Ethics in Engineering Practice". Available at SWAYAM(Offered by IIT Kharagpur), 8 weeks, Starts on August 27, 2018. <u>https://swayam.gov.in/courses/4799-july-2018-ethics-in-engineering-practice</u>
- 2) "Ethics, Technology and Engineering". Available at Coursera (Offered by EindhovenUniversity of Technology), 8 weeks, Starts on July 16, 2018.

https://www.coursera.org/learn/ethics-technology-engineering

Program Core III

Course Name	:	Power Electronics Controlled Electric Drives
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures - 28 Total No. of Lab hours - 28

Course Objective:

	The main objectives of this course are:
1.	Develop ability to model AC and DC machine in generalized framework
2.	To use it to control the machine using power electronic converter

Course Contents:

Sr.No	Course Contents	
		Lectures
1.	Modeling of DC machine Kron's Primitive Machine Model (Two Axis Model), statically induced EMF, Rotational or Dynamically Induced EMF, Generalized Torque Expression of Kron's Primitive machine. Mathematical model of DC machine (shunt, series, separately excited), steady state characteristics with armature and field control, dynamic behavior with constant flux.	8
2.	Power Electronics Controlled DC Drives Static convertor as power actuator for DC drives: single and three phase drives, control loop containing power electronics converters. Control of converter supplied DC drives	6
3.	Modeling of Induction Machine Modeling of three phase Symmetrical Induction Machines (IM) in abc variables, Co-Energy and Torque Expression. d-q (Transformation) Modeling of symmetrical 3 phase Induction Machine, Rotor Transformation, Torque expression in d-q Frame. Equivalent Circuit. Reference Frame Theory, Power Invariant and Amplitude Invariant Transformation, Stanley Reference Frame, Park Reference Frame, Synchronous Reference Frame and arbitrary Reference Frame. Induction Machine Modeling in Arbitrary Reference Frame.	8
4.	Vector Control of Induction Machine Vector Control of Induction Machine: Concept of Space Phasor, Principle of Decoupled Control, Rotor Flux Oriented Vector Control, Stator Flux Oriented Vector Control, Magnetizing Flux Oriented Vector Control. Torque Response. Flux Estimation Schemes.	6

Lab Work:

Sr.No	Lab contents	
		Hours
1.	To obtain the speed control of DC machine using three phase full wave fully controlled thyristorized converter using cosine wave triggering method in open loop and applying the dynamic performance of the drive	5
	under torque and speed reference change.	
2.	To obtain the speed control of DC machine using three phase full wave fully controlled thyristorized converter using cosine wave triggering method in closed loop and analyze the dynamic performance of the drive under torque and speed reference change.	6
3.	To obtain speed control of induction motor using rotor flux oriented vector control and analyze its dynamic performance.	6
4.	To obtain speed control of induction motor using airgap flux oriented vector control and analyze its dynamic performance.	6
5.	To obtain speed control of induction motor using stator flux oriented vector control and analyse its dynamic performance.	5

Course Outcome:

	At the completion of this course, students will be able to:
1.	Applyconcepts to model AC and DC machine in generalized framework
2.	Utilize the concepts to control the machine using power electronic converter

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	W. Leonhard, Control of Electrical Drives, Springer.	2001
2.	R. Krishnan. <i>Electric Motor Drives: Modeling, Analysis, And Control.</i> Prentice Hall.	2001
3.	T.M. Undeland and W.P.Robbins, <i>Power Electronics: Converters applications and design by N Mohan</i> , John Wiley and Sons.	2006
4.	P. Wach, Dynamics and Control of Electrical Drives, Springer.	2011
5.	N. Mohan, First Course On Power Electronics and Drives", MNPERE.	2011

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	P C Sen, "Thyristor DC Drives", Wiley-Interscience Publication.	1981
2.	P. Vas, Vector Control of AC Machines, Clarendon Press Oxford.	1990

MOOCs on this course are available at:

- 1. Prof S.P Das, Advanced Electric Drives NPTEL Lectures, IIT Kanpur.
- 2. Dr. R. Erickson, Introduction to Power Electronics, University of Colorado, Coursera

Program Core IV

Course Name	:	Control Techniques In Power Electronics
Course Code	:	
Credits	:	3
LTP	:	3-0-0
Segment	:	1-6

Total No. Lectures:-42

Course Objectives:

	The main objectives of this course are:								
1.	Development of the working of different switching devices with respect to their								
	characteristics								

Course Contents:

Sr.No	Course Contents	No. of	
		Lectures	
	Modeling of DC-to-DC Power Converters		
1.	State space modeling and simulation of linear systems, Discrete time		
	models, conventional controllers using small signal models		
	Control Design Method of Power Converters		
2.	Sliding Mode & Fuzzy control, Variable structure control, Hysteresis		
	controllers, Output and state Feedback switching controllers		
	Linearized Model and Control of Power Converters		
2	Linear Feedback Control, Controller Design by Pole Placement,	12	
5.	Proportional-Derivative Control via State Feedback, State Feedback	14	
	Control via Observer Design, GPI Controller Design		
4.	Nonlinear Methods in the Control of Power Electronics Devices		
	Feedback Linearization, Passivity Based Control, Exact Error Dynamics	t Error Dynamics	
	Passive Output Feedback Control, Non-linear observers for power	14	
	converters.		

Course Outcomes:

	At the completion of this course, students will be able to:						
1.	The students in this course can apply concepts to model power converters using						
	different control techniques and their linear and nonlinear control.						

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	R.W.Erickson and D. Maksimovic, <i>Fundamentals of Power Electronics</i> ", KLUWER Academic Publishers.	2004
2.	S.R. Hebertt and R.S. Ortigoza <i>Control Design Techniques in Power Electronics Devices</i> , Springer.	2006

Program Elective III – E3

Course Name	:	Smart Grid Technologies
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. Lectures - 21

Course Objectives:

	The main objectives of this course are:
1.	Develop understand the fundamentals of smart grid technologies such as smart
	measurements.
2.	Understanding the smart technology for smart substations, micro grid and distributed
	energy sources,
3.	Importance of power quality management in smart grid, information and
	communication technology for smart grid

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference betw. conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. CDM opportunities in Smart Grid.	4
2.	Smart Grid Technologies: Part 1:Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid.	4
3.	Smart Grid Technologies: Part 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).	4
4.	Micro grids and Distributed Energy Resources: Concept of micro grid, need & applications of micro-grid, formation of micro grid, Issues of Inter-connection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, micro turbines, Captive power plants, Integration of renewable energy sources, power quality issues in renewable energy integration.	5
5.	Information and Communication Technology for Smart Grid: Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication,	4

Wireless Mesh	Network,	Basics	of	CLOUD	Computing	&	Cyber	
Security for Smar	rt Grid.							

Course Outcomes:

	At the completion of this course, students will be able to:
1.	Use smart measurements of smart grid technologies.
2.	Characterize the smart technology for smart substations, micro grid and distributed
	energy sources,
3.	Apply power quality management in smart grid, information and communication
	technology for smart grid

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	C.W. Gellings, <i>The Smart Grid: Enabling Energy Efficiency and Demand Response</i> , CRC Press	2000
2.	J. Ekanayake, N. Jenkins, K. Liyanage, W. Jianzhong and A. Yokoyama, <i>Smart Grid: Technology and Applications</i> , Wiley	2012
3.	A. Keyhani, M.N. Marwali, M. and Dai, <i>Integration of Gr. and</i> <i>Renewable Energy in Electric Power Systems</i> , Wiley	2001
4.	P. S. Fox-Penner, <i>Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities</i> , Island Press	2011
5.	T. Flick and J. Morehouse, Securing the Smart Grid, Elsevier Inc.	2000

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	J.C. Sabonnadière, N. Hadjsaïd, "Smart Grids", Wiley Blackwell	1996
2.	A. Yokoyama, Smart Grid: Technology and Applications, Wiley	1994

MOOCs on this course are available at:

- 1. Dr. M. Vadari and M. Balasubramanyan, *Smart Grids: Electricity for the Future*, IEEE & EDX
- 2. P.S. Prat, Smart Grids for Smart Cities: Towards Zero Emissions, FutureLearn, InnoEbergy, homuork
- 3. M. Vadari, M. Balasubramanyan, *Distributed Energy Smart Grid Resources for the Future*, IEEE, Coursera

Course Name	:	Advanced Electric Drives
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	The understanding of advanced electric drives, machine modeling, vector and direct
	torque control
2.	Knowledge on permanent magnet machines and their control,
3.	Understanding of the concept of special motor and their control for electric drives.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Advanced control of AC Machines DTC of Induction Motor: Introduction, Space Vector PWM of Induction Machine. Modeling of Synchronous Motor in two axis framework. Vector Control of Synchronous Motor Drive, Dynamics of Vector Control in Synchronous Motor Drive, Equivalent Circuit, Torque Production.	4
2.	Permanent Magnet Machines and Control Permanent Magnet Motors: Permanent Magnet Materials, Principles of Permanent Magnet Synchronous Motor and Brushless DC Motors. Dynamic Modeling of BLDC Motors, Control of Brushless DC Motor. Dynamic Modeling of PMSM, Vector Control of PMSM in Park Reference Frame.	6
3.	Special Motors and their Control Switched Reluctance Motor (SRM): Principle of Operation, Torque Production, Modes of Operation, Closed Loop Speed Control of SRM. Stepper Motors: Principle of Operation and Types, Torque Production, Converters for Stepper Motors, Control of Stepper Motors.	4

Lab Work:

Sr.No	Lab contents	
		Hours
1.	To Obtain the performance DTC Induction Motor Drive.	2
2.	To Obtain the performance of Vector Controlled Synchronous Motor Drive.	2
3.	To Obtain the performance of Vector Controlled PMSM Drive.	2
4.	To Obtain the performance of Vector Controlled PMBLDC Motor Drive.	2
5.	To Obtain the performance of switched reluctance and stepper motor drive systems	2

Course Outcomes:

	At the completion of this course, students will be able to:
1.	Understand the fundamentals advanced electric drives, machine modeling, vector and
	direct torque control
2.	Utilize the knowledge acquired on permanent magnet machines and their control.
3.	Control various types of electric drives.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	P.C. Krause, O. Wasynezuk, D.S. Scott, <i>Analysis Of Electric</i> <i>Machinery And Drive Systems</i> , WILEY	2013
2.	Werner Leonhard, Control of Electric Drives, Springer.	2000
3.	R. Krishnan, <i>Switched Reluctance Motor Drives</i> , CRC Press 2001.	2001
4.	R. Krishnan. <i>Electric Motor Drives: Modeling, Analysis, And Control.</i> Prentice Hall.	2001

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	P. Vas, Vector Control of AC Machines, Clarendon Press Oxford	1990
2.	Peter Vas, <i>Sensor less Vector and Direct Torque Control</i> , Oxford University Press.	1998

MOOCs on this course are available at:

1. Prof S.P Das, Advanced Electric Drives NPTEL Lectures, IIT Kanpur.

Course Name	:	Advanced DC/AC Converters
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. Lectures - 21

Course Objective:

	The main objectives of this course are:
1.	To learn the concepts of Advanced DC-AC controllers

Course Contents:

Sr.No	Course Contents	No. of	
		Lectures	
	Impedance Source Inverters		
1.	Comparison with VSI and CSI, Equivalent circuit and operation. Quasi	7	
	impedance source inverters and their topologies.		
	Advanced Multilevel Inverters		
2.	Trinary Hybrid Multilevel Inverter (THMI), Laddered Multilevel DC/AC	14	
	Inverters Used in Solar Panel, Super-Lift Converter Multilevel DC/AC	14	
	Inverters, Switched Capacitor and Switched Inductor Multilevel Inverters		

Course Outcome:

	At the completion of this course, students will be able to:
1.	Design advanced DC-AC controllers

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	F.L. Luo & H. Ye Advanced DC/AC Inverters, CRC Press.	2000
2.	IEEE papers on impedance source inverters	
3.	IEEE papers on new multilevel inverters.	

Program Elective IV – E4

Course Name	:	Advanced DC/DC Converters
Course Code	:	•
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. Lectures - 21

Course Objective:

	The main objectives of this course are:
1.	To learn the concepts of Advanced DC-DC controllers

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
	Introduction	
1.	Pump Circuits: Fundamental pumps, Developed Pumps, Transformer	7
	type Pumps, Superlift Pumps.	1
	Introduction to 1 st , 2 nd , 3 rd , 4 th , 5 th and sixth generation DC-DC Converters	
	Advanced Converters	
2.	Voltage Lift Converters, Positive and Negative Output Super Lift	14
	Converters, Positive and Negative Output Cascade Boost Converters.	

Course Outcome:

	At the completion of this course, students will be able to:
1.	Design advanced DC-DC controllers

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	F.L. Luo & H. YeAdvanced DC/DC Inverters, CRC Press.	2000
2.	IEEE papers on advanced DC-DC converters.	

Course Name	:	Advanced Control In Power Electronics & Drives
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. Lectures - 21

Course Objective:

	The main objectives of this course are:
1.	To learn the concepts of concepts of advanced controllers for Power Electronics and
	Electric Drive Systems

Course Contents:

Sr.No	Course Contents	No. of	
		Lectures	
	Predictive Control of Power Converters and Drives		
1.	Basic concepts, theory and methods of Predictive Control. Application of	10	
	predictive control in AC-DC-AC Convertor System.		
	Neuro and Nonlinear Control of Power Converters and Drives		
2.	Adaptive Neuro controllers for Drive Systems: Basic Concepts, Theory		
	and Applications. Advanced Control and Optimization Techniques in AC	11	
	Drives and DC/AC Sine Wave Voltage Inverters: Selected Problems		

Course Outcome:

	At the completion of this course, students will be able to:
1.	Apply concepts of Advanced controllers for Power Electronics and Electric Drive
	Systems

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	T.O. Kowalska, F. Blaabjerg and J. Rodríguez <i>Advanced and</i> <i>Intelligent Control in Power Electronics and Drives</i> . Springer Publications.	2003
2.	Research papers on MPC controllers for power electronics convertors	

Control Systems

Semester I

Soft Computing

Course Name	:	Internet of Things
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	1-3

Total no. of lectures: 14 Total no. of Lab hrs. : 14

Course Objectives:

The ma	ain objectives of this course are:
1.	Understand core technology, applications, sensors used and IOT architecture along with
	the industry perspective.
2.	Principles and operations of different types of sensors commonly used on mobile platform
	will be taught in a manner that by the end of the course the students will be able to design
	and implement real time solutions using IOT.

Course Contents:

S.No.	Course Contents	No. of		
		Lectures		
	Introduction to IoT			
	What is IoT, how does it work? Difference between Embedded device and IoT	2		
1	device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT	_		
	Solution Architecture Models, Major IoT Boards in Market			
	Setting Up Raspberry/Arduino to Create Solutions			
	Explore Raspberry Pi, Setting up Raspberry Pi, Showing working of Raspberry	3		
2	Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand	5		
	Actuators and MEMS			
	Communication Protocols used in IoT			
	Types of wireless communication, MajorwirelessShort-			
3	rangecommunicationdevices, properties, comparison of these devices (Bluetooth,	3		
5	WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices,			
	properties, comparison of these devices (Cellular IoT,LPWAN)			
	IoT Applications			
4	Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city,	3		
T	smart grid, , connected car, connected health(digital health, telehealth,	5		
	telemedicine), smart retail			
	Sensors:			
	Applications of various sensors: Google Maps, Waze, Whats App, Ola			
	Positioningsensors: encoders and accelerometers, Image sensors: cameras,			
5	Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor	3		
	localization systems,			
	Motion&OrientationSensors:Accelerometer,Magnetometer,ProximitySensor,			
	GyroscopeCalibration, noise modeling and characterization and-noisefiltering			
	and sensor data processing. Privacy & Security			

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Design and build systems that will use sensors, communication protocol and	14
	actuators.	

Course Outcomes:

At the	At the completion of this course, students will be able to:			
1.	Understand concept of IOT and ability to implement in real time scenarios			
2.	Design solutions based on IOT architecture and applications in various fields			
3.	Critically analyze security and privacy issues in IOT			
4.	Apply knowledge to Design and develop			
	variousapplicationsofsensorsinIndustrial, health care, commercial, and building automation			

Bibliography:

S.No.	Book Detail	Year of Publishing
1	Vijay Madisetti and ArshdeepBahga, Internet of Things (AHands-on Approach), 1st Edition, VPT	2014
2	Francis daCosta, Rethinking the Internet of Things: A ScalableApproach to Connecting Everything, 1stEdition, Apress Publications	2013
3	CunoPfister, Getting Started with the Internet of Things, OReillyMedia	2011
4	Kyung, CM., Yasuura, H., Liu, Y., Lin, YL., Smart Sensorsand Systems, Springer International Publishing	2015

MOOCs on this course are available at:

- 1) Introduction to Internet of Things https://www.edx.org/course/introduction-to-theinternet-of-things-iot
- 2) IoT Programming and Big Data -https://www.edx.org/course/iot-programming-bigdata-curtinx-iot4x

Course Name	:	Machine Learning
Course Code	••	
Credits	:	1.5
L T P	:	202
Segment	:	4-6

Total no. of lectures: 14 Total no. of lab hrs: 14

Course Objectives:

	The main objectives of this course are:
1.	To formulate machine learning problems corresponding to different applications.
2.	To understand a range of machine learning algorithms along with their strengths and weaknesses.
3.	To develop reasoning behind Model selection, model complexity, etc.

Course Contents:

S.No.	Course Contents	No.	of
		Lectu	ires
	BASICS OF MACHINE LEARNING:		
	Applications of Machine Learning, processes involved in Machine		
1	Learning, Introduction to Machine Learning Techniques: Supervised	3	
	Learning, Unsupervised		
	LearningandReinforcementLearning,ReallifeexamplesofMachineLearning.		
	SUPERVISED LEARNING:		
	Classification and Regression: K-Nearest Neighbour, Linear		
2	Regression, Logistic Regression, Support Vector Machine (SVM),	6	
	Evaluation Measures: SSE, MME, R2, confusionmatrix, precision, recall, F-		
	Score,ROC-Curve.		
	UNSUPERVISED LEARNING:		
2	Introductiontoclustering, Types of Clustering: Hierarchical-	5	
3	AgglomerativeClustering and Divisive clustering; Partitional Clustering -	2	
	K-means clustering, Principal Component Analysis, ICA.		

Lab Work:

S.No.	Lab Contents	No. of
		hours
1	Python Introduction: Loops and Conditions and other preliminarystuff, Functions, Classes and Modules, Exceptions, Database access, Mathematical computing with Python packages like: numpy, Mat- plotLib,pandas Tensor Flow, Keras	8
2	Application Oriented Project Work	6

Course Outcomes:

At the completion of this course, students will be able to:			
1.	Design and implement machine learning solutions to classification, regression and clustering problems		
2.	Evaluate and interpret the results of the different ML techniques		
3.	Design and implement various machine learning algorithms in a range of Real-world applications.		
4.	Use Python for various applications.		

Bibliography:

S.No.	Book Detail	Year of Publishing
1.	Tom Mitchell, Machine Learning, McGraw Hill,	2017
2.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer,	2011.
3.	T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e,	2008.
4.	Yuxi (Hayden) Liu, "Python Machine Learning By Example", Packet Publishing Limited	2017

MOOCs on this course are available at:

- 1) Data Science: Machine Learning -https://www.edx.org/course/data-science-machinelearning
- 2) Machine Learning https://www.coursera.org/learn/machine-learning

Design of Experiments and Research Methodology

Course Name	:	Design of Experiments and Research Methodologies
Course Code	:	
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28

Total No. of Lab hrs. 28

Course Objectives:

The students should be able to develop an understanding of how to identify research topics, formulate research questions / hypotheses, select an appropriate research and, where applicable, experimental design. Provides a basis so the student can effectively develop a research proposal for either a capstone project, master's thesis, research project, or designed experiment.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction: Types of Research and Their Purposes, Locating,	3
	Analysing, stating and evaluating research problem, need for literature	
	review, steps in conducting literature review, Strengths, Weaknesses,	
	Opportunities, and Threats (SWOT) analysis, research questions and	
	hypothesis, types of hypothesis, evaluation of hypothesis.	
2.	Research Design and Sampling Design: Concept of research design,	2
	features of a good research design, concept of population and sample,	
	characteristics of sample design, types of sampling techniques	
3.	Methods of data collection and measurement: Primary data and	3
	Secondary data, data collection techniques: observation, interview,	
	questionnaires, schedules, case-study, levels of measurement, problems in	
	measurement in research – validity, reliability.	
4.	Statistical Methods of Analysis: Descriptive statistics: mean, median,	4
	mode, range, mean deviation and standard deviation, regression and	
	correlation analysis, inferential statistics: t-tests, Chi-square tests.	
	Correlation (rank difference and product moment), Analysis of variance	
	(ANOVA) (one way)	
5.	Procedure for writing a research report and manuscript: Types of	2
	research reports, steps of writing a report, layout of report, layout of	
	research paper, ethical issues related to publishing, Plagiarism and Self-	
	Plagiarism.	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Select a problem from your area of interest, identifying the type of research	4
	problem it is and perform the SWOT analysis of the existing literature.	
2.	Generate research questions and hypotheses for a problem from your area	4
	of interest.	
3.	Identify the population and sample for the study (highlighting the	4
	technique used for sample selection) for a problem from your area of	

	interest.	
4.	Design a questionnaire for the problem of interest.	4
5.	Utilizing software such as Statistical Package for the Social	6
	Sciences(SPSS), Mini Tab, etc. for the statistical analysis of the results	
	obtained for the desired questionnaire.	
6.	Preparing a research paper for the problem of interest	6

Course Outcomes:

At the e	At the end of the course, students will be able to:			
1.	Develope an understanding of how to identify research topics, formulate research			
	questions and corresponding hypotheses, select an appropriate research and where			
	applicable, experimental design.			
2.	Perform required statistical analyses for any univariate application in a business /			
	industrial setting, regardless of data form, and will be familiar with major indices for			
	measuring correlation and association.			
3.	Further, the underlying assumptions related to each statistical test and its			
	interpretation will be thoroughly reviewed.			

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Probability and Statistics for Engineers and scientists by Anthony J. Hayter, Cencage Learning, 4th Edition	2016
2.	Probability and Statistics for Engineers and scientists by Walpole, Myers, Myers and Ye, 8th ed Pearson Education	2007
3.	Research Methodology - Methods and Techniques, C. K. Kothari, New Age International, 2nd Edition	2004
4.	English for writing research papers by Adrian Wallwork, 2nd Edition. Springer	2016
5.	Statistics: Concepts and Controversies by David S. Moore, William I. Notz, W. H. Freeman	2016

Available MOOCS:

1. https://www.coursera.org/learn/research-methods

2. https://www.lawctopus.com/certificate-course-on-research-methodology-online/

Program Core I

Course Name	:	Modern Control Systems
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. of Lectures – 28 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
3.	To learn the modeling concepts of system, modelling using state space.
4.	Tolearn and implement the optimal control techniques.
5.	To design the digital control system and nonlinear systems.

Course Contents:

Sr No.	Course Contents	No. of Lectures
1	Introduction: Control systems design requirements, classical versus modern approaches of design	2
2	State Space Representation: Concepts related to state space, state space representation, state transition matrix, solution of linear time invariant and linear time varying state equations, canonical forms	3
3	Control System Design in State Space: Controllability, pole placement design using full state feedback-regulator and tracking systems, observers, observability and compensators, full order and reduced order observers	6
4	Linear Optimal Control : Optimal control problem, infinite time linear optimal regulator design, optimal control of tracking systems (Riccati equation based designs).	6
5	Digital Control Systems: Basic concepts, z-transform, stability, performance, state space modeling and solution of linear digital equations, design using pole placement,: regulators and observers and compensators, linear optimal control of digital systems.	7
6	Nonlinear Control Systems: Sources of nonlinearities and characteristics of nonlinear systems, describing function method, phase plane analysis, Lyapunov stability theory.	4

Lab Work:

Sr. No.	Lab Contents	Lab Hours
1	State space modeling of continuous time system and study of stability and state and output responses	02
2	Pole placement design using state feedback for regulator and tracking systems	02

3	Full and reduced order observer design	02
4	State space modeling of discrete time system and study of responses	02
5	Pole placement design for regulator and tracking discrete time systems	02
6	Observer design for discrete time systems	02
7	Describing function analysis of nonlinear systems	02
8	Phase plane analysis of nonlinear systems	02
9	Project 1	04
10	Project 2	04
11	Project 3	04

Course Outcomes:

By th	e end of this course, the student will be:
1	able to apply the modeling concepts of system modeling using state space and understand the design issues in the framework of modern control.
2	conversant with the optimal control techniques.
3	conversant with the concepts of digital control system and non-linear systems.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	A.Tewari, Modern Control Design with MATLAB and Simulink.	2002
-	JohnWiley and Sons Ltd.	2002
2	K. Ogata, Modern Control Engineering.PHI.	2014
3	M. Gopal, Modern Control System Theory. New Age	2005
0	International (P) Ltd.	
4	M.Gopal, Digital Control and State Variable Methods. TMH.	2003
5	W. L. Brogan, Modern Control Theory. Pearson Education India.	2011

MOOCs on this course are available at:

- 1) Lecture Series On Control Engineering, Prof. Sd Agashe, IIT Bombay: nptel.iitm.ac.in.
- 2) 2)Introduction to Control System Design A First Look, Jacob White, Joe Steinmeyer, MIT,

https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x

3) Non-linear systems, Slotine, MIT, http://web.mit.edu/nsl/www/videos/lectures.html

Program Core II
Course Name	:	Linear Optimal Control
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures - 28 Total No. of Lab hours - 28

Course Objectives:

	The main objectives of this course are:
1.	To learn theoretically as well as practically the concepts of state-space fundamentals.
2.	To design the linear state feedback control laws, observer and observer based controllers.
3.	To learn the optimal control: general mathematical procedures, optimal feedback control.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Introduction: Optimal control issues and frame work.	3
	State Feedback Control :State feedback for regulation and tracking,	_
2	observer based compensators and separation property, steady state	4
	tracking with observer based compensators.	
	Optimal Control: General mathematical procedures: Formulation of	
3	optimal control problem, calculus of variation, minimum principle,	8
	dynamic programming.	
	Optimal Feedback Control: Linear state regulator, continuous time	
	linear state regulator, use of linear regulator to solve other linear optimal	
4	control problems, Suboptimal Linear regulators, Minimum time control	0
	of LTI systems.	
	Stochastic Optimal Linear Estimation and Control: Stochastic	
5	processes and linear systems, optimal estimation for linear continuous &	7
	discrete time systems, stochastic optimal linear regulator.	

Sr.No	Lab contents	No. of
		Hours
1	MATLAB/Simulink based simulations for state feedback design	04
2	Optimal control design for deterministic systems.	04
3	Optimal control design for stochastic systems.	04
4	Optimal Estimator for linear systems.	04
5	Project 1	04
6	Project 2	04
7	Project 3	04

Course Outcomes:

By the	end of this course, the student will be able to:
1	Apply practically the concepts of state-space fundamentals.
2	Design the linear state feedback control laws, observer and observer based controllers.
3	Implement optimal control concepts: general mathematical procedures, optimal feedback control.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	R.L. Williams II, and D.A. Lawrence, <i>Linear State-Space Control Systems</i> . John Wiley & Sons.	2007
2	M.Gopal, <i>Modern Control System Theory</i> . New Age International (P) Limited.	2015
3	K.J.Astrom, <i>Introduction Stochastic Control Theory</i> . Academic Press.	2006

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	R.E. Bellman, <i>Dynamic Programming</i> . Princeton University Press.	1957
2	B.D.O. Anderson, and J.B. Moore, <i>Linear Optimal Control</i> . Prentice Hall.	1990

MOOCs on this course are available at:

- 1) Optimal Control , Dr. Barjeev Tyagi, IIT Roorkee, https://onlinecourses.nptel.ac.in/noc17_ee11/preview
- 2) Optimal Control, MIT Open course ware, https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/
- 3) Introduction to Stochastic Optimal Control, MIT Open course ware, https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832underactuated-robotics-spring-2009/video-lectures/lecture-16-introducing-stochasticoptimal-control/

Program Elective I – E1

Course Name	:	Neural Network Based Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the basic conceptsof ANN.
2.	To design the ANN models.
3.	To apply ANN for control applications.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Introduction: Overview of neural networks and training approaches; relevance of neural networks modeling and control.	3
2	Neural network models: feedforward networks (multilayered networks and radial basis function networks), recurrent networks (Hopfield networks, memory neuron networks and dynamic neural networks), CMAC, self organizing map.	4
3	Neural network architecture: Indirect and direct adaptive control, model reference control, interval model based control, predictive control, adaptive critic based control.	3
4	Case studies of NN based control: Engineering applications of backpropagation and radial basis feed-forward networks based control.	4

Sr.No	Lab contents	No. of
		Hours
1	MATLAB/Simulink based simulations for ANN-1	02
2	MATLAB/Simulink based simulations for ANN-2	02
3	MATLAB/Simulink based simulations for ANN-3	02
4	NN based control-1	02
5	NN based control-2	02
6	Project 1	02
7	Project 2	02

Course Outcomes:

By th	By the end of this course, the student will be able to:	
1	Understand the ANN models.	
2	Apply the basic concepts of ANN and their models in control applications.	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	S. Bassis, A. Esposito, F.C. Morabito, Ed., <i>Advances In Neural</i> <i>Networks: Computational And Theoretical Issues</i> . Springer.	2015
2	N. Siddique, Intelligent Control: A Hybrid Approach Based On Fuzzy Logic, Neural Networks And Genetic Algorithms. Springer.	2013
3	L. Belera, and I. Kar, <i>Intelligent Systems And Control: Principles</i> <i>And Applications</i> . Oxford University Press.	2009
4	M. Norgaard, O. Ravn, N.K. Poulsen, andL.K. Hansen, <i>Neural</i> <i>Networks For Modelling And Control Of Dynamic Systems: A</i> <i>Practitioner's Handbook.</i> Advanced textbooks in control and signal processing. Springer.	2000

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	S. Haykin, <i>Neural Networks – A Comprehensive Foundation</i> . Macmillan Publishing Co., New York.	1994
2	J.M.Jurada, Introduction To Artificial Neural Networks. Jaico Publishers Mumbai.	1997
3	Z.X. Cai, Intelligent Control: Principles, Techniques And Applications. World Scientific Publishing Company.	1998
4	S.V. KartaloPoulos, Understanding Neural Networks and Fuzzy logic. PHI.	1996

MOOC on this course are available at:

1) Neural Networks for Machine Learning, <u>Geoffrey Hinton</u>: https://www.coursera.org/learn/neural-networks

2) Neural Networks and Applications, Prof. S. Sengupta, IIT Kharagpur, http://nptel.ac.in/courses/117105084/

3) Neural networks [1.1] : Feedforward neural network - artificial neuron, https://www.youtube.com/watch?v=SGZ6BttHMPw

Course Name	:	Introduction to Adaptive Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures – 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the real time parameter estimation.
2.	To design the deterministic self tuning regulators and model reference adaptive
	system.
3.	To apply these concepts practically.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Introduction: Effects of process variations, Adaptive schemes, adaptive control problems, applications.	2
2	Parameter estimation: Least squares and regression models estimating parameters, simulation of recursive estimation.	3
3	Deterministic self tuning regulators: Pole placement design, indirect self tuning regulators, continuous time self tuners, direct self tuning regulators, disturbances with known characteristics.	4
4	Model Reference Adaptive Systems: MIT Ruler determination of adaptive gain, Lyapnov theory, Design of MRAS using Lyapnov theory, applications to adaptive control, Output feedback relation betw. MRAS and STR.	5

Sr.No	Lab contents	No. of Hours
1	MATLAB/Simulink based simulations for MRAC	2
2	Implementation of self tuning regulators	2
3	Applications of adaptive control techniques in engineering problems	2
4	Project 1	2
5	Project 2	2
6	Project 3	2
7	Project 4	2

Course Outcomes:

By th	By the end of this course, the student will be able to:			
1	be conversant with basics of adaptive control.			
2	apply the concepts of parameter estimation, deterministic self tuning regulators practically.			
3	implementmodel reference adaptive systems for simple engineering problems.			

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	I.D. Landau, R. Lozano, M.M'Saad, and A. Karimi, <i>Adaptive Control: Algorithms, Analysis And Applications.</i> Springer Science & Business Media.	2011
2	K.J Astrom, and B. Wittenmark, <i>Adaptive Control</i> . Second Edition, Eaglewood, cliffs.	1995
3	P.R Kumar, and P. Varaiya, <i>Stochastic Systems – Estimation</i> , <i>Identification And Adaptive Control.</i>	1986
4	S. Sastry, <i>Adaptive Control: Stability, Convergence And Robustness</i> . Prentice Hall.	1989

MOOC on this course are available at:

1) Introduction to Adaptive Control, Rahul Rai: <u>https://www.coursera.org/lecture/intelligent-machining/introduction-to-adaptive-control-uZlZf</u>.

2) Why adaptive control?: https://www.youtube.com/watch?v=pU5vq6rjmKk

3)1 01 Introduction to the course System Identification and Parameter Estimation:

https://www.youtube.com/watch?v=d8dXoJ9MoDs

Course Name	:	System Dynamics
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures - 14 Total No. of Lab hours - 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the basic concepts of strategic modeling with system dynamics.
2.	To learn how to initiate strategic change in organizations
3.	To implement the feedback based simulation models.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Basics: General systems theory, systems thinking, system dynamics, relationship betw. system Dynamics and Cybernetics. System dynamics as an approach to understand the behavior of complex systems over time.	2
2	Models: Classification of Models-Abstract, physical, Static, Dynamic, linear nonlinear, stable, unstable, steady state, transient, opens, closed, models in physical sciences engineering and social sciences and mental models.	2
3	Principles: formulation of System Dynamics models, time relationship, amplification, information distortion, correspondence of models and real system variables.	3
4	Building Blocks: Basic concepts behind the study of complex systems. Examining the patterns of behavior that real-world systems exhibit, understanding the basis of the structure that causes such patterns to emerge.	3
5	Causal loop diagrams: Reinforcing and balancing loops, positive and negative feedback, conceptualization exercises, loop polarity and shift in loop dominance.	2
6	Generic structures: S shaped growth, unexpected behavior of Ist order, 2nd order, 3rd order, and 4th order loops, Exponential, oscillating systems.	2

Sr.No	Lab contents	
		Hours
1	Modeling and simulation Exercises of negative Feedback Loops	02
2	Modeling and simulation Exercises of Positive Feedback Loops	02
3	Modeling and simulation exercises of Exponential shape growth	02

4	Modeling and simulation exercises of S shape growth	02
5	Modeling and simulation Exercises of Oscillating systems	02
6	Modeling and simulation Exercise of higher order systems	02
7	Modeling exercise of Dynamics of energy system	02

Course Outcome:

By th	e end of this course, the student will be able to:
1	Learn the concepts of system dynamics and cybernetics, feedback loops, non-linearity, casual loop diagram, generic structures, transferability of structures, systems thinking
1	and dynamics of energy systems.
2	Understand the dynamic relationship, model classifications, principles formulation of
	system dynamic models.
3	Learn the feedback loops, non-linearity, casual loop diagram, generic structures,
	transferability of structures, systems thinking and dynamics of energy systems.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J. N. Warfield, Introduction to Systems Science.	2006
2	D.H. Kim, <i>Systems thinking Tools- A users Reference guide</i> .Pegaus Communication [available online].	2000
3	MIT System Dynamics Society OCW resources.	2002
4	D. H. Meadows, Thinking in Systems: A Primer eBook.	2008

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	M. J. Radzicki, and R.A. Taylor, <i>Introduction to System Dynamics</i> . U.S Department of Energy.	1997
2	P.Senge,Fifth discipline.	1990

MOOCs on this course are available at:

 Introduction to System Engineering, <u>Dr Mike Ryan</u>, Senior Lecturer, <u>Dr Ian</u> <u>Faulconbridge</u>, Industry Fellow : <u>https://www.coursera.org/learn/systems-engineering</u>.
Introduction to System Dynamics: Overview:

https://www.youtube.com/watch?v=AnTwZVviXyY

Program Elective II – E2

Course Name	:	Fuzzy Logic Based Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the basic conceptsof fuzzy logic theory.
2.	To design the fuzzy logic systems.
3.	To implement the applications of fuzzy logic control for different system control and improvement.

Course Contents:

Sr.No	Course Contents	No. of	
		Lectures	
1	Fuzzy Logic Basics: Fuzzy sets & membership, Operation & properties of classical sets. Fuzzy set operation and properties of fuzzy sets. Features		
	of MF, standard forms and boundaries.	-	
2	Types of Fuzzy Logic Systems:Mamdani Fuzzy Logic and Takagi	3	
-	Sugeno Fuzzy Logic system.	0	
3	Design of Fuzzy Logic systems:Fuzzification, Membership value of assignments, fuzzy sets and fuzzy relations, de-fuzzificationmethods.Fuzzy Rule Based Systems.	3	
4	Applications of fuzzy controllers in Engineering.	4	

Sr.No	Lab contents			
		Hours		
1	MATLAB/Simulink based simulations for fuzzy logic systems-1	02		
2	MATLAB/Simulink based simulations for fuzzy logic systems-2	02		
3	Application of fuzzy logics in control design-1	02		
4	Application of fuzzy logics in control design-2	02		
5	Project 1	02		
6	Project 2	02		
7	Project 3	02		

Course Outcome:

By the end of this course, the student will be able to:		
1	Apply the basic concepts of fuzzy logic theory.	
2	Use fuzzy logic control for engineering applications.	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J.R. Timothy, <i>Fuzzy logic with Engineering Applications</i> . McGraw Hill, Inc.	1997
2	S.V. KartaloPoulos, Understanding Neural Networks and Fuzzy logic. PHI.	1996
3	G. J. Klir, and B. Yaun, <i>Fuzzy Sets & Fuzzy logic Theory & applications</i> . PHI.	1995
4	S. Rajasekaran, and G.V. Pai, <i>Neural Networks, Fuzzy Logic And Genetic Algorithm: Synthesis And Applications</i> . PHI Learning Pvt. Ltd.	2003
5	N. Siddique, Intelligent Control: A Hybrid Approach Based On Fuzzy Logic, Neural Networks And Genetic Algorithms. Springer.	2013
6	F. Matía, G.N. Marichal, E. Jiménez, Eds, <i>Fuzzy Modeling and Control: Theory and Applications</i> . Paris, France: Atlantis Press.	2015

MOOC on this course are available at:

- **1)** Introduction to Fuzzy logic: http://nptel.ac.in/courses/106105173/2
- 2) Introduction to Intelligent Systems and Control: http://nptel.ac.in/courses/108104049/
- **3)** Introduction to Fuzzy logic control: http://nptel.ac.in/courses/108104049/16

Course Name	:	AdvancedTechniques in Adaptive Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the advanced techniques of adaptive control techniques.
2.	To implement the adaptive control techniques for practical applications.
3.	To design the auto-tuning and gain scheduling methods for the practical applications.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Properties of Adaptive Systems: Nonlinear dynamics, adaptation of a feedforward gain, analysis of indirect discrete time self tuners, Averaging, application of averaging techniques. Averaging in stochastic systems, robust adaptive controllers.	3
2	Stochastic and Predictive Self Tuning Regulators: Design of minimum variance and moving average controllers, stochastic self tuning regulators, Linear quadratic STR Adaptive Predictive control.	3
3	Stochastic Adaptive Control: Multistep decision problems, stochastic adaptive problem dual control, suboptimal strategies.	3
4	Auto-tuning: PID Control, auto tuning techniques, transient response methods, methods based on relay feedback, relay oscillations.	2
5	Gain Scheduling: Principles, design of gain scheduling controllers, applications of gain scheduling.	3

Sr.No	Lab contents			
		Hours		
1	MATLAB/Simulink based simulations for self tuning regulator	02		
2	Implementation of gain scheduling controller	02		
3	Applications of adaptive control in engineering problems	02		
4	Project 1	02		
5	Project 2	02		
6	Project 3	02		
7	Project 4	02		

Course Outcome:

By th	By the end of this course, the student will be able to:		
1	Be conversant with the advanced adaptive control techniques.		
2	Apply the concepts of real time parameter estimation,		
	Design deterministic self tuning regulators, Stochastic and Predictive Self Tuning		
3	Regulators, model reference adaptive system, stochastic adaptive control, auto-tuning		
	and gain scheduling to simple engineering problems		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	I.D. Landau, R. Lozano, M.M'Saad, and A. Karimi, <i>Adaptive Control: Algorithms, Analysis And Applications.</i> Springer Science & Business Media.	2011		
2	K.J Astrom, and B. Wittenmark, <i>Adaptive Control</i> . Second 1995 Edition, Eaglewood, cliffs.			
3	P.R Kumar, and P. Varaiya, <i>Stochastic Systems – Estimation</i> , 1986 <i>Identification And Adaptive Control.</i>			
4	S. Sastry, <i>Adaptive Control: Stability, Convergence And Robustness</i> . Prentice Hall.	1989		

MOOC on this course are available at:

1) Gain Scheduling of PID controllers: https://www.youtube.com/watch?v=g7R1USqJOUo

2)Stochastic Self tuning regulators: https://slideplayer.com/slide/1577262/

3) Online Parameter Estimation and Adaptive Control:

https://www.youtube.com/watch?v=KAHBUtwWHSg

Course Name	:	Applications of System Dynamics
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Total No. Lectures - 14 Total No. of Lab hours – 14

Course Objectives:

	The main objectives of this course are:
1.	To learn the advanced techniques of system dynamics.
2.	To learn the advanced concepts of the system archetypes.
3.	To implement the application of archetypes to organizational issues and problems.

Course Contents:

Sr.No	Course Contents				
1	Group Modeling - System thinking as paradigm, necessity and benefit of system dynamics, exercise in group modeling, Transferability of structures.	2			
2	System Archetypes 1 -Feedback loops for the archetypes - Fixes that Backfire, Shifting the Burden, Limits to Success, Tragedy of the Commons Accidental Adversaries.	3			
3	System Archetypes 2- Feedback loops for the archetype - Escalation, DriftingGoals, Success to the Successful Growth and Underinvestment.	3			
4	System Dynamics Applications - Applying Systems Thinking System dynamics and Common Archetypes to Organizational Issues and problems.	4			
5	Energy Modeling- Basics of world and India energy systems.	2			

Sr.No	Lab contents	
		Hours
1	Modeling and simulation of Structure transfer in analogus systems-1	02
2	Modeling and simulation of Structure transfer in analogus systems-2	02
3	Modeling and simulation of Archetype -1	02
4	Modeling and simulation of Archetype-2	02
5	Modeling and simulation of Archetype- 3	02
6	Modeling and simulation of Archetype-4	02
7	Modeling and simulation of Archetype- 5	02

Course Outcome:

By the end of this course, the student will be able to:		
1	Learn the advanced concepts of system dynamics.	
2	Understand the system archetypes application of archetypes to Organizational Issues and problems.	

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	J. N. Warfield, Introduction to Systems Science. 2006		
2	D.H. Kim, <i>Systems thinking Tools- A users Reference guide</i> .Pegaus Communication [available online].	2000	
3	MIT System Dynamics Society OCW resources.	2002	
4	D. H. Meadows, Thinking in Systems: A Primer eBook.	2008	

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	M. J. Radzicki, and R.A. Taylor, <i>Introduction to System Dynamics</i> . U.S Department of Energy.	1997
2	P.Senge,Fifth discipline.	1990

MOOCs on this course are available at:

- **1)** An Introduction to System Dynamics by George Richardson: https://www.youtube.com/watch?v=MSo8kqbLDlw
- 2) Systems Dynamics and Control: Module 2 Introduction to Modeling: https://www.youtube.com/watch?v=vwso-xHLNGc
- **3)** System Thinking System Archetypes Tragedy of the Commons: https://www.youtube.com/watch?v=Pu6vfId92II

Engineering Mathematics

Course Name	:	FOURIER TRANSFORMS
Course Code	:	
Credits	:	01
LTP	:	2-1-0
Segment	:	1-2

Total No. of Lectures-10 Tutorials -5

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the concept of Fourier transform and be able to compute it for				
	standard examples.				
2	To make the students able to apply Fourier transforms to solve differential equations and partial				
	differential equations.				

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Fourier Transforms: Fourier Integral formulas, Definition and examples, Basic properties, Fourier cosine and sine transforms and examples, Basic properties of Fourier cosine and sine transforms, Multiple Fourier transforms.	05
2	Fast Fourier Transforms and Short Term Fourier Transforms: Definition and	05
	examples, Basic properties, Applications.	

Course Outcomes:

At the	At the end of the course, students will be able to:			
1 Solve differential equations by using Fourier transforms				
2	Solve partial differential equations by using Fourier transforms			
3	Apply FFT and STFT to engineering problems			

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Integral Transforms and Their Applications", Loknath Debnath, CRC	1995.
	Press, Inc.,	
2	"Integral Transforms and their Applications", Brian Davies, 3rd	2001
	Edition, Springer-Verlag, New York, Inc,	
3	"Fourier Transform and Its Applications", Ronald N. Bracewell, 2nd	1986
	Edition, McGraw-Hill Inc., US,	

Course Name	:	NUMERICAL METHODS
Course Code	:	
Credits	:	01
LTP	:	2-0-2
Segment	:	3-4

Total No. of Lectures – 10 Practicals -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the basics of numerical methods.
2	To make the students able to solve problems on system of linear equations and Interpolation by
	numerical methods.

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Error Analysis: Definition and sources of errors, Propagation of errors, Floating-	02
	point arithmetic and rounding errors.	
2	Interpolation: Interpolation using Finite differences, Numerical Differentiation	04
	and Numerical integration, Trapezoidal and Simpson's rules.	
3	Numerical Solution of Differential Equations: Picard's method, Taylor series	04
	method, Euler and modified Euler methods, Runge-Kutta methods, Predictor-	
	Corrector method.	

Lab Work:

Sr.No	Lab. Contents	No. of
		Hours
1.	Solving Interpolation, Numerical Differentiation and Numerical integration	04
	problems using Mathematica.	
2.	Solving Differential equations numerically using Mathematica.	06

Course Outcomes:

By the end of the course, the students will be able to solve the following by numerical methods:

- 1. Problems on Interpolation
- 2. Problems on Differentiation, Integration.
- 3. Solve differential equations.

Sr.No.	Name of Book / Authors / Publishers	Year of Publication/ Edition
1	"Introduction to Numerical Analysis", Atkinson K. E., John Wiley.	1989
2	"Applied Numerical Analysis", Gerald C. F. and Wheatley P. O., Pearson	2004
3	"Numerical Methods for Scientific and Engineering Computation", Jain M.	2004
	K., Iyengar S.R.K. and Jain R. K., New Age International Publisher.	
4	"Elements of Numerical Analysis", Gupta R.S., Macmillan India Ltd.	2008

Course Name	:	OPTIMIZATION TECHNIQUES AND GENETIC ALGORITHMS
Course Code	:	
Credits	:	01
LTP	:	2-0-2
Segments	:	5-6

Total No. of Lectures – 10,

Practicals -10

Course Objectives: The main Objectives of this course are:

1	To make the students understand the need of Optimization Techniques and develop the ability to				
	form mathematical model of optimization problems.				
2	To make the students able to identify and solve linear and non-linear models of optimization				
	problemsusing Genetic Algorirhms.				

Course contents:

Sr.No	Course Contents	No. of
		Lectures
1	Introduction to optimization problem, local and global optimum, conversion of a constrained problem to unconstrained problem.	04
2	Genetic Algorithms, Binary and Real coded Genetic Algorithms, Coding and decoding of variables, Key steps in a GA, starting population, fitness evaluation, reproduction, crossover, mutation, evaluation.	06

Lab Work:

Sr.No	Lab. Contents	No. of Hours
3.	Using Genetic Algorithms in various optimization Problems	10

Course Outcomes:

1	The students are able to form mathematical model of optimization problems .
2	The students are able to distinguish between linear and nonlinear models .
3	The students are able to solve simple problems using Mathematica/MATLAB

Sr.No.	Name of Book / Authors / Publishers	Year of
		Publication/
		Edition
1	"Practical Genetic Algorithms", Haupt, R. L. and Haupt, S.E., John Wiley	1998
	&Sons	
2	"Genetic Algorithm in Search, Optimization and Machine Learning",	1989
	Goldberg, D.E., Addison Wesley.	
3	"Engineering Optimization", Ranjan, Ganguli, University Press.	2011

Semester II

Soft Skills & Management

Course Name	:	Communication Skills
Course Code	:	
Credits	:	1.5
LTP	:	1-0-4
Segment	:	1-3

Total No. Tutorials-7 Total No. of Lab hours – 28

Course Objectives:

	The main objectives of this course are:
6.	To enhance competence in communication skills: verbal and nonverbal.
7.	To provide orientation in technical communication skills: spoken and written.
8.	To sensitize students to attitude formation and behavioural skills.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Communication Skills, Soft Skills and Interpersonal Communication	1
2.	Speech: Structure, Elements, Content, Organization and Delivery, J-a-M	1
3.	Writing Skills: Letters, Minutes of Meeting	1
4.	Technical Report Writing: Concept and Structure	1
5.	Research Writing: Concept and Structural Framework	1
6.	Power Point Presentation: Project Presentation	1
7.	Interviews	1

Lab Work:

Sr.No	Lab contents		
		Hours	
21.	Self- Introduction	2	
22.	Negotiation Skills & Role Play	2	
23.	J-a-M Session	2	
24.	Building Word Power through Reading	2	
25.	Group Discussion and Case Study	4	
26.	Writing Skills: Letters, Minutes of Meeting	2	
27.	Technical Report Writing: Concept & Structure	4	
28.	Research Writing: Concept and Structural Framework	4	
29.	Power Point Presentation: Project Presentation	4	
30.	Interviews	2	

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	Show enhanced competence in communication skills and technical communication.		
2.	Develop awareness of attitude formation and behavioural appropriateness		
3.	Gain self-confidence and perform better in their academic and professional life.		

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Technical Communication", RamanMeenakshiand SharmaSangeeta, Oxford University Press	2015
2.	"English for Research Paper Writing", WallworkAdrian, Springer, London.	2011
3.	"English Vocabulary In Use: Advanced+ CD", MichaelMcCarthy, CUP, Cambridge.	2004
4.	"Advanced English Grammar", HewingsMartin, CUP, Cambridge.	2003
5.	"Study Listening", TonyLynch, CUP, Cambridge.	2004
6.	"Study Speaking", KennethAnderson, CUP, Cambridge.	2010
7.	"Study Reading", Glendenning H. Eric, CUP, Cambridge.	2004
8.	"Study Writing", HampLyons Liz & HeasleyBen, CUP, Cambridge.	2004
9.	"Study Skills in English", WallaceMichael J., CUP, Cambridge.	2004

MOOCs on this course are available at:

1) "Take Your English Communication Skills to the Next Level". Available at Coursera (Offered by Georgia Institute of Technology), 4 weeks, Starts on September 10, 2018. https://www.coursera.org/learn/english-communication-capstone

2) "Effective Communication in Globalised Workplace- The Capstone". Available at Coursera (Offered by National University of Singapore), 3 weeks, Starts on August 06, 2018. https://www.coursera.org/specializations/effective-communication

Course Name	:	Management Entrepreneurship and IPR
Course Code	:	
Credits	:	1
LTP	:	0-2-0
Segment	:	4-5

Total No. Tutorials – 14

Course Objectives:

The ma	The main objectives of this course are:			
1.	To make students familiar with the concepts of Management, Entrepreneurship and			
	Intellectual Property Rights (IPRs).			
2.	To make students understand how to initiate a new Start-up and manage it			
	effectively.			
3.	To enable students to convert their innovative ideas into different forms of IPRs.			

Course Contents:

Sr.No	Course contents		
1.	Introduction to Management: Concepts and Principles of Management	1	
2.	Functions of Management: Planning Process - Hypothetical Planning of an Event/Activity, Form of Organization Structure - Case Study, Human Resource Planning and Process, Elements of Directing and Effective Control Mechanism, Activity: Role Playing/Management Game	4	
3.	Introduction to Entrepreneurship: Concepts of Entrepreneurship and Characteristics of Entrepreneurs	1	
4.	Development Phases of Entrepreneurship: Innovation and Idea Generation, Project Formulation and Validation (Feasibility Analysis), Business plan	2	
5.	Ecosystem for Entrepreneurship Development: Government Schemes and Initiatives, Financial and Non-Financial Institutional Support, Legal Framework, Role of Incubator, Venture Capitalist, Angel Investor, Crowd Funding Accelerator etc.	2	
6.	Intellectual Property Rights (IPRs): Concept and Relevance of IPRs, Process for filing IPR		
7.	Different Forms of IPRs: Patents, Copyright, Trademarks, Industrial Designs and Geographic Indicator	2	

Course Outcomes:

At the completion of this course, students will be able to:		
1.	Developand manage new project/Start-up.	
2.	Apply managerial skills for success of entrepreneurial/business venture.	
3.	Make effective use of IPR practices in their ventures.	

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Management Principles and Practice", Srinivasan R. and Chunawalla S.A., Himalaya Publishing House.	2017
2.	"Introduction to Management", Schermerhorn John R. Jr. And Bachrach Daniel G., 13 th Edition, Wiley Publications	2016
3.	"Principles & Practice of Management", Prasad L.M., 8 th Edition, Sultan Chand & Sons.	2015
4.	"The New Era of Management", Daft R.L., 11 th Edition, Pubs: Cengage Learning.	2014
5.	"Case Studies in Management", Pandey Chandra Akhilesh, 2 nd Edition, I.K. International Publishing House Pvt. Ltd.	2015
6.	"Harvard Business Review: Manager's Handbook", Harvard Business School Press.	2018
7.	"Entrepreneurship", Trehan Alpana, Dreamtech Press.	2016
8.	"Entrepreneurship and Small Business" Schaper Michael, Volery Thierry, Weber Paull and Lewis Kate, 3 rd Asia-Pacific Edition, Wiley Publications	2018
9.	"Harvard Business Review: Entrepreneur's Handbook", 1 st Edition, Harvard Business Review Press	2018
10.	"Take Me Home", Bansal Rashmi, 1 st Edition, Westland.	2014
11.	"Intellectual Property Law", Narayanan P., 3 rd Edition, Eastern Law House	2017
12.	"Intellectual Property Rights", Pandey Neeraj and Dharni Khushdeep, PHI Learning	2014
13.	"Intellectual Property Rights", Rosedar S.R.A., LexisNexis (Quick Reference Guide – Q&A Series)	2016
14.	MSME Annual Publications (<u>www.msme.gov.in</u>)	Annual
15.	WIPO Annual Publications (www.wipo.int)	Annual

MOOCs on this course are available at:

- "Entrepreneurship: Do Your Venture", Available at edx (Offered by IIM Bangalore), Self-Paced (6 weeks). <u>https://www.edx.org/course/entrepreneurship-do-your-venture</u>
- "Becoming an Entrepreneur", Available at edx (Offered by MIT), Self-Paced (6 weeks).

https://www.edx.org/course/becoming-entrepreneur-mitx-launch-x-4

- 3) "How to Build a Start-up", Available at Udacity, Self-Paced (One Month). https://in.udacity.com/course/how-to-build-a-startup--ep245
- 4) "Intellectual Property Rights: A Management Perspective, Available at edx (Offered by IIM Bangalore), Starts on 1 August 2018 (6 weeks).

https://www.edx.org/intellectual-property-rights-a-management-perspective

Course Name	:	Professional Ethics
Course Code	:	
Credits		0.5
LTP		0-1-0
Segment		6-6

Total No. Tutorials -7

Course Objectives:

	The main objectives of this course are:
1.	To imbibe ethical values and understanding.
2.	To develop moral thinking that will help students to recognize their potential.
3.	To engage and motivate the students to perform ethically in their professional life.

Course Contents:

Sr.No	Course contents	No. of Tutorials
1.	Introduction to Ethics: Concept of Ethics – Nature, Scope, Sources,	2
	Types, Functions and Factors influencing Ethics, Ethics in Engineering	
2.	Ethics in Profession: Concepts of Honesty, Integrity, Reliability, Risk,	2
	Safety and Liability, Responsibilities and Rights of Professionals,	
	Professional accountability.	
3.	Ethics and Business: Concept of Business Ethics – Nature and	1
	Objectives, Ethical dilemmas in business ethics.	
4.	Self-Development: Concept of Self-Assessment – SWOT Analysis,	2
	Self-Concepts, Self-Confidence, Self-Esteem, Managing Time and	
	Stress, Human values.	

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Demonstrate knowledge and better understanding of self and to manage time and stress
	effectively.
2.	Have subjective well-being.
3.	Have ethical decision making ability in their personal and professional life.

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	"Professional Ethics", Subramaniam R., 2 nd Edition, Oxford University Press	2017
2.	"Introduction to Psychology", Kalat James W., 11 th Edition, Cengage Learning.	2017

2	"Business Ethics – Text and Cases", Murthy C.S.V., 1 st Edition,	2014
э.	Himalaya Publishing House.	
4	"A Foundation Course in Human Values and Professional	2010
4.	Ethics", Gaur R.R., Sangal R. and Bagaria G.P., Excel Books.	2010
	"Issues and Ethics in the Helping Professions", Corey G., Corey	2010
5.	M.S. and Callanan P., 8 th Edition, Brooks/Cole, Cengage	
	Learning.	
6	"The Curse of Self: Self-awareness, Egotism and the Quality of	2007
υ.	Human Life", Leary M.R., 1 st Edition, Oxford University Press.	
7	"Business Ethics", Hartman L.P. and Chatterjee A., 3 rd Edition,	2006
/.	Tata McGraw Hill.	
Q	"Business Ethics and Professional Values", Rao A.B., Excel	2006
0.	Books.	
0	"Business Ethics – Concepts and Cases", Velasquez M.G.,	2001
9.	5 th Edition, Prentice Hall.	
10	"Theories of Personality", Hall C.S., Lindzey D. and Cambell	1997
10.	J.B., 4 th Edition, Hamilton Printing Company.	

MOOCs on this course are available at:

- "Ethics in Engineering Practice". Available at SWAYAM(Offered by IIT Kharagpur), 8 weeks, Starts on August 27, 2018. <u>https://swayam.gov.in/courses/4799-july-2018-ethics-in-engineering-practice</u>
- 2) "Ethics, Technology and Engineering". Available at Coursera (Offered by EindhovenUniversity of Technology), 8 weeks, Starts on July 16, 2018.

https://www.coursera.org/learn/ethics-technology-engineering

Program Core III

Course Name	:	Discrete Time Control Systems
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures - 28 Total No. of Lab hours - 28

Course Objectives:

	The main objectives of this course are:
1.	To learn the concepts of signal processing and digital control and z-transformation.
2.	To study the state-variable analysis of digital control system.
3.	To design the state feedback digital control system and apply these concepts practically on real time systems.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Introduction: control system terminology, computer based control, control theory (history & trends).	3
2	Signal processing in digital control: advantages of digital control, basic digital control scheme, principle of signal conversion, basic discrete-time signals, time domain & transfer function models, stability in z –plane, sampling,z-transformation.	8
3	State Variable Analysis of Digital Control System: state description of digital processors, state description of sampled continuous-time plants, solution of state difference equations controllability and observability.	8
4	Digital Control System with State Feedback, dead beat control by state feedback and dead beat observers, lyapunov stability analysis for discrete-time systems.	9
5	Practical labs: MATLAB/Simulink based simulations for discrete time state space modeling, pole placement method and discrete time LQR design.	14

Sr.No	Lab contents			
		Hours		
1	MATLAB/Simulink based simulations for discrete time state space	02		
L	Modeling.	02		
2	Design based on Pole placement method	02		
3	Discrete time LQR design.	02		
4	Deadbeat observer design	04		

5	Project 1	06
6	Project 2	06
7	Project 3	06

Course Outcome:

By the end of this course, the student will be able to:			
1	Apply the concepts of signal processing and digital control,		
2	Apply z-transformation, state-variable analysis of digital control system.		
3	Design state feedback digital control system for engineering systems.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	M. Gopal, <i>Digital Control and State variable methods</i> . Tata McGraw-Hill publishing company limited.	2008
2	G. Gu, <i>Discrete-Time Linear Systems: Theory and Design with Applications</i> . Springer Science & Business Media.	2012
3	Y. Okuyama, Discrete control systems. Springer London.	2014
4	K. Abidi, J,X. Xu, <i>Advanced Discrete-Time Control</i> . Springer Singapore: Imprint: Springer.	2015

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	B.C. Kuo, <i>Digital Control Systems</i> .Orlando Florida: Saunders College Publishing.	1992
2	G.F.Franklin, J.D. Powel, and M.L. Workmen, <i>Digital Control of Dynamic Systems</i> . John Wiley & Sons.	1997
3	K. Ogata, <i>Discrete-time Control Systems</i> . Englewood cliffs, New jersey: Prentice-hall.	1995
4	R. Gayakward, and L. Sokoff, <i>Analog and Digital Control Systems</i> . Englewood cliffs, New Jersey: Prentice-hall.	1988

MOOCs on this course are available at:

- 1) Discrete time Signal Processing, Alan V. Oppenheim, Tom Baran:https://www.edx.org/course/discrete-time-signal-processing-mitx-6-341x-1
- 2) Digital Control Systems: <u>http://nptel.ac.in/courses/108103008/</u>
- 3) ECE320 Lecture10-2b: Discrete-time Systems Design: https://www.youtube.com/watch?v=5cyozZiFLPg

Program Core IV

Course Name	:	Non-linear Control Systems
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	1-6

Total No. Lectures - 28 Total No. of Lab hours - 28

Course Objectives:

	The main objectives of this course are:
1.	To learn the concepts of learn theoretically and apply practically the various
	concepts of non linear control for qualitative analysis.
2.	To study the controllability and observability of the non linear systems under
	different disturbances.
3.	To design variable structure control.

Course Contents:

Sr.No	Course Contents	
		Lectures
1	General Properties of linear and non-linear systems, perturbation theory, and perturbation dynamics.	2
2	Controllability and Observability of Non-linear systems	2
3	Stability of Non-linear Systems – Lyapunov Theorems, small gain theorem, phase-plane Analysis, describing functions.	8
4	Non-Linear Control techniques:feedback linearization, Nonlinear observers	8
5	Variable Structure control: and sliding mode control	8

Sr.No	Lab contents	
		Hours
1	MATLAB/Simulink based analysis using describing function method	02
2	MATLAB/Simulink based analysis using phase plane .	02
3	MATLAB/Simulink based Sliding model control-1	02
4	MATLAB/Simulink based Sliding model control-2	02
5	MATLAB/Simulink simulation for feedback linearization	02
6	Project 1	06
7	Project 2	06
8	Project-3	06

Course Outcomes:

By th	e end of this course, the student will be able to:
1	Model uncertainties existing in the systems
2	Apply practically the various concepts of non-linear control for the analysis of the non linear systems under different conditions.
3	Design variable structure control for stability analysis of non linear control systems.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	S. Vaidyanathan, C. Volos, Eds., Advances and Applications in	2016
1	Nonlinear Control Systems. Berlin, Germany: Springer.	2016
2	I.Fantoni, R. Lozano, Non-linear Control for Underactuated	2002
	Mechanical Systems. Springer Science & Business Media.	2002
3	H.J. Marquez, Nonlinear control systems: Analysis and Design.	2003
	Hoboken: Wiley-Interscience.	
4	A.Astolfi, L. Marconi, Analysis and Design of Nonlinear Control	2008
4	Systems.	
5	H. Khalil H, Nonlinear Systems. 3 rd edition, Macmillan.	2002

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J.J. Slotine, and W.P. Li, <i>Applied Nonlinear Control</i> . Prentice Hall.	1991
2	A.Isidori, Nonlinear Control Systems. 2 nd edition Springer.	1989

MOOCs on this course are available at:

- 1) Non-linear systems, Slotine, MIT, <u>http://web.mit.edu/nsl/www/videos/lectures.html</u>
- 2) Online Controls Tutorial in MATLAB: http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
- 3) Non-linear control systems: https://www.youtube.com/watch?v=BIJz4dqkj3U

Program Elective III – E3
Course Name	:	Introduction to Robust Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Course Objectives:

	The main objectives of this course are:
1.	To learn thefundamentals of robust control systems.
2.	To design the LQRs, LQG/LTR and study the singular values and robustness.
3.	To learn the robust control techniques.

Course Contents:

Sr.No	Course Contents		
		Lectures	
1	Introduction : Vector spaces, Linear subspaces, invariant subspaces, vector norms and matrix norms, singular value decomposition, semidefinite matrices, description of linear systems, operations on systems, state space realizations for transfer matrices.	3	
2	Linear Quadratic Regulators: return ratio and difference, design of LQR and robustness analysis.	5	
3	LQG/LTR: design and its robustness analysis	2	
4	Singular Values: Properties, applications and stability, robustness and sensitivity.	2	
5	Robust Control techniques: Introduction to H_2 and $H\infty$ control techniques and their design formulations.	2	

Sr.No	Lab contents	
		Hours
1	MATLAB/Simulink based simulations for LQG/LTR design-1	02
2	MATLAB/Simulink based simulations for LQG/LTR design-2	02
3	Implementation of LQR control-1	02
4	Implementation of LQR control-2	02
5	Applications of robust control techniques in real problems	02
6	Project 1	02
7	Project 2	02

Course Outcome:

By th	By the end of this course, the student will be able to:		
1	Be conversant with the basics of robust control		
2	Apply the design approaches such as LQR, LQG/LTR, Singular values.		
3	Analyze robustness of the control systems.		
4	Design robust control algorithms on the engineering systems.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	A.Belmiloudi, <i>Stabilization, Optimal And Robust Control: Theory</i> <i>And Applications In Biological And Physical Sciences.</i> Springer Science & Business Media.	2008
2	R.K. Yedavalli, <i>Robust Control Of Uncertain Dynamic Systems</i> . Springer-Verlag New York.	2016
3	K. Zhou, and J.C. Doyle, <i>Essentials of Robust Control</i> . Prentice Hall	1998

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J.C. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory.	1992
2	R.S. Sanchez-Pena, and M.Sznaier, <i>Robust Systems Theory and Applications</i> . John Wiley & Sons.	1998
3	J.M.Maciejowski, <i>Multivariable Feedback Design</i> .Addison-Wesley Publishing Company.	1989

MOOCs on this course are available at:

1)	Robust control	systems	:https://ww	w.iitk.ac	c.in/new/	ee654a
----	----------------	---------	-------------	-----------	-----------	--------

- Robust Control Course, Dr. Hamid D. Taghirad, http://saba.kntu.ac.ir/eecd/ecourses/robust.htm
 Control Bootcamp: Introduction to Robust Control:
- 3) Control Bootcamp: Introduction to Robust Control: https://www.youtube.com/watch?v=Y6MRgg_TGy0

Course Name	:	Introduction to System Modeling And Identification
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Course Objectives:

	The main objectives of this course are:
1.	To learn thefundamentals of system modelling.
2.	To study the different types of models
3.	To study and design the various identification methods.

Course Contents:

Sr.No	Course Contents	No. of	
		Lectures	
1	Introduction to modeling: Black-box and grey-box models	3	
2	Parametric and non-parametric models; ARX, ARMAX (etc.) models.	3	
3	Predictive, open-loop, black-box identification methods. Time and	1	
	frequency domain methods.	4	
4	Subspace identification methods. Optimal experimental design, Cramer-	1	
	Rao bounds, input signal design.	-	

Lab Work:

Sr.No	Lab contents		
		Hours	
1	MATLAB/Simulink based simulations for ARX models	02	
2	Implementation of ARMAX models	02	
3	Applications of system Modeling and identification methods in real	02	
	problems		
4	Project 1	04	
5	Project 2	04	

Course Outcome:

By th	e end of this course, the student will be able to:
1	Be conversant with the basics of system Modeling and identification
2	Apply practically the concepts of Modeling and identification to simple engineering problems.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	K.J Keesman, <i>System Identification: An Introduction</i> . Springer Science & Business Media.	2011
2	L.Ljung, System Identification : Theory For Users. Prentice Hall.	1986
3	G.C. Goodwin, and R.C. Payne, <i>Dynamic System Identification:</i> <i>Experiment Design And Data Analysis</i> , New York: Academic Press.	1977

MOOC on this course are available at:

1)System Identification and Parameter Estimation, Dr. Erwin de Vlugt: https://ocw.tudelft.nl/courses/system-identification-and-parameter-estimation/

2) System Identification, Prof. MuntherDahleh: <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-435-system-identification-spring-2005/</u>

3) 1 01 Introduction to the course System Identification and Parameter Estimation: <u>https://www.youtube.com/watch?v=d8dXoJ9MoDs</u>

4) Introduction to System Identification: https://www.youtube.com/watch?v=u7hJ1aF-JrU

Program Elective IV – E4

Course Name	:	Advanced Techniques in System Identification
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To learn the advanced concepts of system identification.
2.	To study the closed-loop identification strategies.
3.	To implement the various identification methods.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Optimal experimental design, Cramer-Rao bounds, input signal design.	2
2	Parametric identification methods. On-line and batch approaches.	4
3	Closed-loop identification strategies. Trade-off betw. controller	1
5	performance and information available for identification. Auto-tuners.	-
4	Model validation in classical and robust control frameworks. Set based	1
	modeling.Iterative identification and design approaches.	-

Sr.No	Lab contents	No. of
		Hours
1	MATLAB/Simulink based simulation for parametric identification.	02
2	MATLAB/Simulink based simulation forclosed loop identification	02
	methods	
3	Applications of system Modeling and identification methods in real	02
	problems-1	
4	Applications of system Modeling and identification methods in real	02
-	problems-2	
5	Project 1	02
6	Project 2	02
7	Project 3	02

Course Outcome:

By th	By the end of this course, the student will be able to:		
1	Be conversant with the advanced identification techniques.		
2	Apply closed loop identification techniques.		
3	Apply practically the concepts of identification to simple engineering problems.		

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	K.J Keesman, <i>System Identification: An Introduction</i> . Springer Science & Business Media.	2011
2	L.Ljung, System Identification : Theory For Users. Prentice Hall.	1986
3	G.C. Goodwin, and R.C. Payne, <i>Dynamic System Identification:</i> <i>Experiment Design And Data Analysis</i> , New York: Academic Press.	1977

MOOC on this course are available at:

 System Identification and Parameter Estimation, Dr. Erwin de Vlugt: https://ocw.tudelft.nl/courses/system-identification-and-parameter-estimation/
 System Identification, Prof. MuntherDahleh: <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-435-system-identification-spring-2005/</u>

Course Name	:	$H\infty$ Control
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2
Segment	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To learn the concepts of H2 and $H\infty$ spaces for robust control systems.
2.	To study the structure stability, performance, uncertainty and linear fractional transformations.
3.	To study and design the parameterized controllers.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	H2 and H ∞ Spaces: Hilbert spaces, H2 and H ∞ spaces, computing of L2	2
	and H2 norms, computing of L^{∞} and H^{∞} norms.	
2	Internal Stability: Feedback Structure, internal stability, coprime factorization over $RH\infty$.	2
3	Performance Specifications: Feedback properties. Weighted H2 and $H\infty$ performances, selection of weighting functions.	2
4	Uncertainty and Robustness: Model uncertainty, small gain theorem, stability under unstructured uncertainties, robust performance.	2
5	Linear Fractional Transformations: Linear Fractional Transformations, block diagrams, basic principles, Redheffer star products.	2
6	Controller parametrization: Existence of stabilizing controller, controller parametrization, coprime factorization approach.	2
7	$H\infty$ Control: Various problem formulations, general $H\infty$ solutions, $H\infty$ control, Case studies of controller designs	2

Sr.No	Lab contents	
1	MATLAB/Simulink based simulations for $H\infty$ control design-1	02
2	MATLAB/Simulink based simulations for $H\infty$ control design-2	02
3	Implementation of H ₂ control technique	02
4	MATLAB/Simulink based simulations for H_2 /H ∞ control design-1	02
5	Applications of robust control techniques in real problems	02
6	Project 1	02

7 Project 2

Course Outcome:

By the end of this course, the student will be able to:				
1	Become conversant with the H ∞ based robust control techniques			
2	Apply robust techniques for the control problems of engineering disciplines.			

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	A.Belmiloudi, <i>Stabilization, Optimal And Robust Control: Theory</i> <i>And Applications In Biological And Physical Sciences.</i> Springer Science & Business Media.	2008
2	R.K. Yedavalli, <i>Robust Control Of Uncertain Dynamic Systems</i> . Springer-Verlag New York.	2016
3	K. Zhou, and J.C. Doyle, <i>Essentials of Robust Control</i> . Prentice Hall	1998

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	J.C. Doyle, B. Francis, and A. Tannenbaum, <i>Feedback Control Theory</i> .	1992
2	R.S. Sanchez-Pena, and M.Sznaier, <i>Robust Systems Theory and Applications</i> . John Wiley & Sons.	1998
3	J.M.Maciejowski, <i>Multivariable Feedback Design</i> .Addison-Wesley Publishing Company.	1989

MOOCs on this course are available at:

- 1) Robust control systems :https://www.iitk.ac.in/new/ee654a
- 2) Multivariable Control Systems: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-245-multivariable-control-systems-spring-2004/
- 3) Robust Control Course: http://saba.kntu.ac.ir/eecd/ecourses/robust.htm

02

Open Electives

Course Name	:	Renewable Energy Systems
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3
		Total No. of Lectures-21

Course Objectives:

	The main objectives of this course are:
1.	Making students conversant with the non-conventional energy systems such as solar
	energy, wind energy, energy from biomass, hydro energy (micro/mini hydro plants).
2.	Further the students shall be expected to design renewable energy systems

Course Contents:

Sr No.	Course Contents:		
		Lectures	
1.	Introduction Introduction to Energy Sources: Energy sources and their availability, Non-renewable reserves and resources; renewable resources.	4	
2.	 Solar Energy Solar processes and spectral composition of solar radiation; Radiation flux at the Earth s surface. Solar collectors. Types and performance characteristics. solar energy storage. b) Application of solar energy: Solar thermal electric conversion, Thermal electric conversion systems, solar electric power generation, Design of photovoltaic system for power generation solar cells. 	6	
3.	Wind Energy Wind energy conversion; efficiency limit for wind energy conversion, types of converters, aerodynamics of wind rotors, power ~ speed and torque ~ speed characteristics of wind turbines, wind turbine control systems; conversion to electrical power: induction and synchronous generators, grid connected and self-excited induction generator operation, constant voltage and constant frequency generation with power electronic control, reactive power compensation;	5	
4.	Tidal Energy: Wave characteristics, Conversion systems and their performance features application	1	
5.	Geothermal Energy: Introduction to Geothermal Energy Conversion	1	
6.	Biomass Energy: Introduction to Biomass Energy Conversion	2	
7.	Hydro Energy: Electricity generation and Water pumping, Micro/Mini hydropower systems	2	

Course outcome:

	At the completion of this course, students will be able to:
1.	Design and analyze the non- conventional energy systems

Bibliography:

Sr. No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	D. P. Kothari, K. C. Singal and R. Ranjan, <i>Renewable Energy Sources and Emerging Technologies</i> , Prentice Hall of India.	2008
2.	S. N. Bhadra, D. Kastha, S. Banerjee, <i>Wind Electrical Systems</i> , Oxford Univ. Press.	2005
3.	S. A. Abbasi, N. Abbasi, <i>Renewable Energy Sources and Their Environmental</i> PHILearning	2008

MOOCs on this course are available at:

- 1. A. Smets, Sustainable Energy: Design a Renewable Future, TU Delft & EDX
- 2. A. Smets, Solar Energy, TU Delft & EDX
- 3. A. Stegner, P.P. Drobinski, *Wind resources for renewable energies*, École Polytechnique& Coursera

Course Name	:	Digital Signal Processing And Applications
Course Code	:	
Credits	:	1.5
LTP	:	2-0-2

Course Objectives:

	The main objectives of this course are:
1.	To learn the concept of digital signal processing techniques.
2.	Tolearn the concept of signal processing.
3.	To implement the digital signal processing techniques in practical applications.

Course Contents:

Sr.No	Course Contents	
		Lectures
1.	Review of Discrete Time LTI Systems & Signal Processing: Why digital signal processing, standard discrete time signals & classification. Classification of discrete time system Time Domain Representation of LTI systems, impulse response and convolution integral	02
2.	Transformations : Discrete Fourier transform, computation of the DFT of real sequences, introduction to FFT algorithms, introduction to Z- transform, the inverse Z- transform, ROC for Z-transform, stability test, application of Z- transform in the analysis of discrete time LTI systems	03
3.	Theory and design of digital filters: Introduction to filtering concept, introduction to filter design with design of Butterworth and Chebyshev filters, introduction to other filter types, standard structures for realising IIR filters, frequency transformations betw. low, high and band pass filter, Introduction to FIR filters and the basic filter structures, design of filters using window functions.	05
4.	DSP processor Introduction to DSP processor, design of various FIR and IIR filters on MATLAB, design and analysis of LTI systems.	02

Sr.No	Lab contents	No. of
		Hours
1.	Implement (i) a Butterworth filter and (ii) a Chebyshev filter for a given	03
	filter specification on MATLAB platform and compare performance of	
	the two.	
2.	Details study of any DSP processor.	06

Course Outcome:

By the er	By the end of this course, the student will be able to:		
1	Acquired the ability to use digital signal processing techniques for various		
	process controls.		
2	The students are expected to learn the concept of digital signal and signal		
	processing, time domain representation, transformation, filtered design etc. for		
	their projects and research applications.		

References:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	Digital Signal Processing by Mitra, Sanjit.k. Publisher: McGraw Hill Education	Third edition
2.	Digital Digital Filters: Analysis, Design, and Signal Processing Applications by Andreas Antoniou	2018

MOOCs on this course are available at:

- 1. P. Prandoni, *Digital Signal Processing*, École Polytechnique Fédérale de Lausanne& Coursera.
- 2. A.V. Oppenhiem and T. Bran, Discrete-Time Signal Processing, MIT & EDX
- 3. A.V. Oppenhiem, Digital Signal Processing, MIT Open Courseware

Course Name	:	PLC & Automation
Course Code	:	
Credits	:	1.5
LTP	:	3-0-0
Segment	:	1-3

Total No. Lectures - 21

Course Objective:

	The main objectives of this course are:
1.	Impact knowledge of industrial automation through PLC which acting as a controller
	or brain to make decision.

Course Contents:

Sr.No	Course Contents				
		Lectures			
1.	Understanding Automation & Control	2			
2.	Basic Components of Automation Hardware / Software & classification				
3.	Industrial Automation concept				
4.	Design of PLC programming Ladder Logic	3			
5.	Programmable Logic Controllers basic's Software / Hardware				
6.	Creating & Editing Ladder Logic Program				
7.	Interfacing PLC with various field input/output devices				
Q	PLC Fault Finding, Trouble Shooting Forcing I/O's Detailed	2			
0.	sequence of wiring	3			
9.	PLC Control Panel Wiring Interfacing with Relay logics	2			

Course Outcome:

By th	By the end of this course, the student will be able to:				
1.	After going through this course students will be able to understand the concept				
	automation of an industry				
2.	Apply their knowledge to Industry for Intelligent Control automatically.				

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	W.W. John, <i>Programmable Logic Controller Programming</i> <i>Methods and Applications</i> , Pearson Education	2003
2.	W.Bolton, Programmable Logic Controller, Elsevier	2009
3.	T. Thakur, Mechatronics, Oxford University Press.	2016

MOOCs on this course are available at:

1. R. Rai, Programmable Logic Controllers (PLC), University of Buffalo & Coursera

Course Name	:	Intelligent Control
Course Code	:	
Credits	:	3
LTP	:	2-0-2
Segment	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To learn the basic conceptsof ANN.
2.	To study the fuzzy logic theory.
3.	To study and design the ANNs and fuzzy logic systems for practical applications.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1	Neural network learning rules-hebbian, perception, delta, windrow-Holf learning rule. Winner Take all, outstar learning	2
2	Multilayer networks back propagation, algorithm and their training limitations, applications, Feed forward networks – Radial basis function.	2
3	Counter propagation network; adaptive resonance theory, Kohenenself organizing maps.	2
4	Auto Associative memories and Bidirectional memories.	2
5	Fuzzy sets & membership ,Operation & properties of classical sets, Fuzzy set operation and properties of fuzzy sets, Features of MF, standard forms and boundaries, Fuzzification, Membership value of assignments, fuzzy sets and fuzzy relations, de- fuzzificationmethods.Fuzzy Rule Based Systems,	3
6	Applications of neural networks and fuzzy controllers in Engineering.	3

Sr.No	Lab contents	
		Hours
1	NN based control-1	02
2	NN based control-2	02
3	FLC based control-1	02
4	FLC based control-2	02
5	Project 1	02
6	Project 2	02
7	Project 3	02

Course Outcomes:

At the end of the course, students will be able :	
1	To develop ANN models and fuzzy logic theory.
2	To apply concepts of fuzzy control
3	To apply control applications of these to engineering problems.

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	S. Bassis, A. Esposito, F.C. Morabito, Ed., <i>Advances in neural</i> <i>networks: computational and theoretical issues.</i> Springer. 2015			
2	N. Siddique, Intelligent control: a hybrid approach based on fuzzy logic, neural networks and genetic algorithms. Springer.	2013		
3	L. Belera, and I. Kar, <i>Intelligent systems and control: Principles and Applications</i> . Oxford University Press.	2009		
4	M. Norgaard, O. Ravn, N.K. Poulsen, andL.K. Hansen, <i>Neural networks for modelling and control of dynamic systems: a practitioner's handbook.</i> Advanced textbooks in control and signal processing. Springer.	2000		
5	S. Rajasekaran, and G.V. Pai, <i>Neural networks, fuzzy logic and genetic algorithm: synthesis and applications</i> . PHI Learning Pvt. Ltd.	2003		
6	F. Matía, G.N. Marichal, E. Jiménez, Eds, <i>Fuzzy Modeling and Control: Theory and Applications</i> . Paris, France: Atlantis Press.	2015		
7	J.R. Timothy, <i>Fuzzy logic with Engineering Applications</i> . McGraw Hill, Inc.	1997		

Classical Books:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	S. Haykin, <i>Neural Networks – A Comprehensive Foundation</i> . Macmillan Publishing Co., New York.	1994
2	J.M.Jurada, Introduction to Artificial neural networks. Jaico Publishers Mumbai.	1997
3	Z.X. Cai, Intelligent control: Principles, techniques and applications. World Scientific Publishing Company.	1998
4	S.V. KartaloPoulos, Understanding Neural Networks and Fuzzy logic. PHI.	1996
5	J.R. Timothy, <i>Fuzzy logic with Engineering Applications</i> . McGraw Hill, Inc.	1997

6	G. J. Klir, and B. Yaun, Fuzzy Sets & Fuzzy logic Theory &	1005
	applications. PHI.	1995

MOOC on this course are available at:

1)Neural Networks for Machine Learning, Geoffrey Hinton: https://www.coursera.org/learn/neural-networks **2**)Neural Networks and Applications, Prof. S. Sengupta, IIT Kharagpur, http://nptel.ac.in/courses/117105084/

3)Introduction to Intelligent Systems and Control: http://nptel.ac.in/courses/108104049/

4) Introduction to Fuzzy logic control: http://nptel.ac.in/courses/108104049/16

Course Name	:	Supervisory Control and Data Acquisition (SCADA) systems
Course Code	:	•
Credits	:	1.5
LTP	:	3-0-0
Segment	:	4-6

Total No. Lectures - 21

Course Objectives:

	The main objectives of this course are:
1.	Acquire knowledge of the fundamentals of SCADA.
2.	Understanding of the components in SCADA and its communication protocols

At the end of this course, the student should be able to acquire knowledge of the fundamentals of SCADA ,its components and its communication protocols

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
1.	Introduction to Supervisory Control and Data Acquisition.	2
2.	SCADA Functional requirements and Components.	3
3.	General features, Functions and Applications, Benefits.	2
4.	Configurations of SCADA, RTU (Remote Terminal Units) Connections	3
5.	SCADA Communication requirements.	2
6.	SCADA Communication protocols: Past Present and Future.	3
7.	Structure of a SCADA Communications Protocol.	3
8.	Industrial Application of SCADA	3

Course Outcomes:

After	completion of the course, the students will be conversant with various optimization
techn	iques and will be able to apply these techniques to engineering problems.
1.	List and describe the hardware components, typical communications architectures and
	software/communication components of a SCADA system.
2.	Describe common SCADA communication protocols and their main characteristics.
3.	Describe common industrial applications of Supervisory Control and Data Acquisition
	(SCADA) systems

Bibliography:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	S.A. Boyer, SCADA: Supervisory Control And Data	2010
	Acquisition, ISA: The Instrumentation, Systems, and Automation	
	Society	

2.	J.D. McDonald and M.S. Thomas, Power System SCADA and	2015
	Smart Grids,	
3.	R. Mehra, PLCs & SCADA : Theory and Practice, CRC Press	2012
4.	D. Reynders, E. Wright, and G.Clarke, Practical Modern SCADA	2004
	Protocols: DNP3, 60870.5 and Related Systems, Elsevier	
5	D. Bailey, Practical SCADA for Industry, Elsevier	2003

Course Name	:	Advanced Mechatronics
Course Code	:	
Credits		1.5
LTP		3-0-0
Segments		4-6

Total No. Lectures – 21

Course Objectives:

	•
	The main objectives of this course are:
4.	To impart knowledge and information about design and development of intelligent systems.
5.	To study the control of intelligent systems.

Course Contents:

Sr.No	Course Contents	No. of
		Lectures
	Understanding Mechatronics : Basic Components of Mechatronics and	
1.	Advanced mechatronics Examples : Manufacturing, CNC Robotics,	03
	Transportation equipment, Medical equipment, Defense equipment,	
	Space exploration, Sports, Smart homes ,Smart Grid ,Smart City	
	Hardware concept of Mechatronics :	
	(i)Transducers and Sensors: Ultrasonic transducer, Laser ultrasonic,	
	Hall Effect sensor, Variable reluctance sensor, Pressure sensor, and	
	Accelerometer,	
2.	(ii)Signal condition devices : Analog and Digital Circuits and Devices	06
	(iii)Controllers :Microprocessor based system, Microcontroller based	
	system, Programmable Logic Controller based System	
	(iv)Actuators: Mechanical ,Electrical Piezoelectric ,Hydraulic and	
	Pneumatic,Electromechanical.	
3.	Software concept of mechatronics : Programming Languages	03
	,Assembly,C,C++,Matlab,Ladder,Simulink etc. Real time system	
	Advance Mechatronics Approach : Systems Modeling and Simulation,	
	transfer function, system response, Linear /non-linear system analysis,	
4.	system stability	05
	Digital control Applications, , On- Off Control, Supervisory Controller ,	
	Direct Digital Controller, P-I-D Controller	
_		01
5.	System Fault Finding, Trouble Shooting	01
-	Mecharonics system hands on training and project design &	
6.	development: Sensor/transducer system, Signal conditioning ,Controller,	03
	Actuator, Advanced design and development approach.	

Course Outcomes: After going through this course students will be able to understand the process involved in design ,development and control of intelligent systems .Their knowledge will help to understand working of any intelligent system and think to

design and develop their own system of intereset.

References:

Sr.No	Name of Book/ Authors/ Publisher	Year of Publication
1.	Tilak Thakur Mechatronics ,Oxford University Press ,2016	2016
2.	C. De Silva. Mechatronics: An Integrated Approach. CRC Press, 2005	2005
3.	W. Bolton. Mechatronics: A Multidisciplinary Approach. 4th Edition, Pearson, 2008	2008

MOOCs on this course are available at:

1. Prof. D. Trumper, Mechatronics, MIT Open Courseware