
PG-Curriculum

(Structure and Course Contents)

Environmental Engineering

With effect from July 2018

Civil Engineering Department Punjab Engineering College

(Deemed to be University)
Chandigarh

Index

S. No.	Course Stream	Page no.
1.	PG Curriculum Structure	1-3
	Semester-I	
2.	Soft Computing	4-9
3.	Soft skills & Management	10-16
4.	Program Core-I &II	17-21
5.	Program Elective	22-36
6.	Engineering mathematics	37-40
	Semester-II	
7.	Design of Experiments and Research Methodology	43-44
8.	Program Core-III&IV	45-48
9	Program Elective	49-60
10.	Open Elective	61-64

PG Curriculum Structure

Sr. No.	Course Stream	Course Name	Credits	Segment {Fractal system (each section of 0.5 Cr and 7 contact hours)}					
		Comparation T		1	2	3	4	5	6
1	G - G	Semester I	1.5					I	
1.	Soft	Internet of Things	1.5						
2	Computing Soft Skills and	Machine Learning							
2.		Communication Skills (CS)	1.5						
	Management	Management and Entrepreneurship(M)/IPR	1						
		Professional Ethics (PE)	0.5						
3.	Program Core-	Physico-Chemical Processes in Water &	3						
٥.	I logram Core-	Wastewater Engineering	3						
4.	Program Core-	Environmental Chemistry	3						
	II	&Microbiology							
5.	Program	• Solid & Hazardous waste management	1.5						
	Elective-I: E1	• Ecological & Ecosystem Engineering							
		• Environmental Geo-technology							
		• Environmental Hydraulics & Hydrology							
		 Principles & Design of water supply 							
		treatment systems							
	Program	 Environmental Systems Analysis 	1.5						
	Elective-II: E2	Environmental Biotechnology							
		• Fate & transport of contaminants in							
		natural systems							
		• Remote Sensing & GIS							
6.	Engineering	Engineering Mathematics- I	1						
	Mathematics	(Fourier Transform)							
	(EM)	Engineering Mathematics- II	1						
		(Optimization techniques)							
		Engineering Mathematics- III (Numerical	1						
		Analysis)	10						
		Total Credits	18						

Sr. No.	Course Stream	Course Name	Credits	Segment {Fractal system (each section of 0.5 Credits and 7 contact hours)} 1 2 3 4 5 6			edits		
		Semester II		1	4	3	4	3	U
1.	Design of experiments and research methodology	Design of Experiments and Research Methodology	3						
2.	Program Core III	Biological Processes - Design for Wastewater Treatment	3						
3.	Program Core- IV	Air & Noise Pollution & Control	3						
4.	Program Elective-III: E3	 Environmental Impact Assessment Surface & Ground water Modeling Environmental System Modeling Energy Systems & Environment 	1.5						
	Program Elective-IV: E4	 Industrial Wastewater Management Indoor Air Quality Life Cycle Analysis Rural Water Supply & Environmental Sanitation 	1.5						
5.	Open Elective	Climate Change & Sustainable Development Clean Technology	1.5						
6.	Mini project/ Pre- dissertation	Training y	3						
		Total Credits	18						

Summer Term *

Sr.	Course	Course Name	Credits
no.	Code		
1		Industrial Visit (3 days to 1 week of visit,	Satisfactory/ Non-
		Submission and presentation of visit report)	satisfactory

^{*}After Examination of second semester, in the first week of summer vacation industry visit can be undertaken.

Course Name Cred		Credits	When it runs in a semester							
			1	2	3	4	5	6		
Semeste	r-III									
1.	Dissertation/Industry	14								
	Project									

Course Name No.		Credits	When it runs in a semester							
				1	2	3	4	5	6	
Semeste	r-IV	•								
1.	Dissertation/Industry	18								
	Project									

Total credits - 68

- 20% courses/semester can be offered in blended mode MOOC's/Industry.
- MOOC's/Industry offered course is having fractional credits. Industry offering course content will be designed by industry will be as per expert availability. Industry person will deliver and evaluate this subject. As per the duration of MOOC's/industry offered course, credits of this course can be decided (fractional credits).

SEMESTER -I

SOFT COMPUTING

Course Name	:	Internet of Things
Course Code	:	SCM 5011
Credits	:	1.5
LTP	:	2-0-2
Segment	:	1-3

Total No. Lectures:-14 Total No. of Lab hours – 14

Course Objectives:

The student should be able to understand IoT architecture and market perspective. Also, student should be able to understand the basic principles and operation of different types of sensors commonly used on mobile platforms.

Course Contents:

Sr.No							
		Lectures					
1.	Introduction to IOT What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Market, Privacy issues in IOT	2					
2.	Setting Up Raspberry Pi/Arduino to Create Solutions Explore Raspberry Pi, Setting up Raspberry Pi, Showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS.	3					
3.	Communication Protocols used in IoT Types of wireless communication, Major wireless Short-range communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN)	3					
4.	IoTApplications IoT Applications for Value Creations Introduction, IoT applications for industry: Future Factory Concepts, Smart Grids, Brownfield IoT, Smart Objects, Smart Applications	3					
5.	Sensors Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope, Calibration, - noise Modeling and characterization, and - noise filtering and sensor data	3					

processing,	Privacy	&	Security,	Selection	of	Sensors	for	Practical	
Applications	S								

Lab Work:

Sr.No	Lab contents				
1.	Setting up Raspberry Pi and Arduino	2			
2.	Build small scale wireless communicating IOT device	4			
3.	Integrate positioning sensors to IOT device	4			
4.	Integrate motion and orientation sensors to IOT device	4			

Course Outcomes:

At th	e end of the course, students will have:
1.	Understand the concept of IOT
2.	Study IOT architecture and applications in various fields
3.	Study the security and privacy issues in IOT.
4.	Understand various applications of sensor in Industrial, healthcare, commercial, and
	building automation.

Sr.N o	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", VPT, 1st Edition	2014
2.	Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", Apress Publications, 1st Edition	2013
3.	CunoPfister, "Getting Started with the Internet of Things", O-Reilly Media	2011
4.	Kyung, CM., Yasuura, H., Liu, Y., Lin, YL., Smart Sensors and Systems, Springer International Publishing	2015

Course Name	:	Machine Learning
Course Code	:	SCM 5012
Credits	:	1.5
LTP	:	2-0-2

Total No. Lectures:-14 Total No. of Lab hours – 14

Course Objectives:

The students should be able to design and implement machine learning solutions to classification, regression and clustering problems; and be able to evaluate and interpret the results of the algorithms

Course Contents:

Sr.No	Course Contents		
		Lectures	
1.	Python	4	
	Introduction, Conditional Statements, Looping, Control Statements,		
	String Manipulation, Lists, , Tuple, Dictionaries, Functions, Modules,		
	Input-Output, Exception Handling		
2.	Supervised Learning	3	
	Linear Regression, Support Vector Machines, Decision Tree Learning		
3.	Unsupervised Learning	4	
	K-means, hierarchical clustering, principal component analysis, Neural		
	Networks		
4.	Reinforcement and Control Learning	3	
	Introduction to reinforcement and control learning, Algorithms of control		
	learning		

Lab Work:

	V	
Sr.No	Lab contents	No. of
		Hours
1.	A small scale gaming application	8
2.	Learn how to automate day-to-day tasks using Python.	6

Course Outcomes:

At the end of the course, students will have:			
1.	Understand advantages and disadvantages of different machine learning algorithms		
2.	Identify suitability of machine learning algorithms for different domains		

Sr.N o	Name of Book/ Authors/ Publisher	Year of Publication/Rep rint
1.	TanejaSheetal, Kumar Naveen, "Python Programming: A modular approach by Pearson", Pearson Education; First edition	2016
2.	Paul Barry, "Head First Python: A Brain-Friendly Guide", Shroff/O'Reilly; Second edition	2016
3.	Tom M. Mitchell, "Machine Learning", McGraw Hill Education;	2017

	First edition	
4.	Yuxi (Hayden) Liu, "Python Machine Learning By Example", Packt Publishing Limited	2017

SOFT SKILLS & MANAGEMENT

Course Name	:	Communication Skills (CS)
Course Code	:	SSM 5021
Credits	:	1.5
LTP	:	0-1-4

Total No. Tutorials:- 07
Total No. of Lab hrs:- 28

Course Objectives:

- To enhance competence in communication skills: verbal and nonverbal.
- To provide orientation in technical communication skills: spoken and written.
- To sensitize students to attitude formation and behavioural skills.

Total No. Tutorials:- 07

Sr.No	Course Contents	
		Lectures
1	Introduction to Communication Skills, Soft Skills and Interpersonal	1
1.	Communication	
2	Speech: Structure, Elements, Content, Organization and Delivery	1
2.	J-a-M	
3.	Writing Skills: Letters, Minutes of Meeting	1
4.	Technical Report Writing: Concept & Structure	1
5.	Research Writing: Concept & Structural Framework	1
6.	Power Point Presentation: Project Presentation	1
7.	Interviews	1

Lab Work

Sr.No	Lab. Contents	No. of Hours
1.	Self- Introduction	2
2.	Negotiation Skills & Role Play	2
3.	J-a-M Session	2
4.	Building Word Power through Reading	2
5.	Group Discussion and Case Study	4
6.	Writing Skills: Letters, Minutes of Meeting	2
7.	Technical Report Writing: Concept & Structure	4
8.	Research Writing: Concept & Structural Framework	4
9.	Power Point Presentation: Project Presentation	4
10.	Interviews	2

Course Outcomes

At th	At the end of the course, students will be able to		
1	Enhance their competence in communication and technical communication and develop		
	awareness of attitude formation and behavioural appropriateness.		
2	The course will address the gap which exists between employer expectations and student		
	proficiency.		

Sr.No	Book Detail	Year of
510110	2001 2001	Publication
1.	Technical Communication, Meenakshi Raman and Sangeeta Sharma, Oxford University Press	2015
2.	English for Research Paper Writing, Adrian Wallwork, Springer, London	2011
2	English Vocabulary In Use: Advanced+ CD, McCarthy Michael, CUP,	2004
3.	Cambridge	
4.	Advanced English Grammar, Martin Hewings, CUP, Cambridge	2003
5.	Study Listening, Lynch Tony, CUP, Cambridge	2004
6.	Study Speaking, Anderson Kenneth, CUP, Cambridge	2010
7.	Study Reading, Glendenning H. Eric, CUP, Cambridge	2004
8.	Study Writing, Lyons Liz Hamp& Ben Heasley, CUP, Cambridge	2004
9.	Study skills in English, Michael J. Wallace, CUP, Cambridge	2004

Course Name	:	Management and Entrepreneurship/ IPR
Course Code	:	SSM 5022
Credits	:	1
LTP	:	0-3-0

Total No. Tutorials:- 14

Course Objectives:

The main aim of this course is to make students familiar with the concepts of Management and Entrepreneurship and understand how to develop new start-up and manage it effectively. It also aims to create awareness about the concepts of Innovation, Ideation and IPR.

Sr.No	Course Contents	No. of
		Tutorials
1.	Principles and Functions of Management	1
2.	Planning Process - Hypothetical Planning of an Event/Activity	1
3.	Form of Organization Structure - Case Study	1
4.	Human Resource Planning and Process, Current HR Practices	2
5.	Elements of Directing and Effective Control Mechanism	
	Activity: Role Playing/Management Game	
6.	Concepts of Entrepreneurship and Characteristics of Entrepreneurs	1
7.	Development Phases of Entrepreneurship	4
	-Idea Generation	
	-Project Formulation and Validation	
	-Business plan	
8.	Ecosystem for Entrepreneurship Development and IPR	2

Course Outcomes

At th	At the end of the course:		
1	The students will learn to develop and manage new project/start-up.		
2	The students will be able to use management skills for success of business venture.		

Sr.No	Book Detail Year Public		
1	"Entrepreneurship", TrehanAlpana, Dreamtech Press/Wiley India Publication.	2018	
2	"Management Principles and Practice", Srinivasan R. and Chunawalla S.A., Himalaya Publishing House.	2017	
3	"Essentials of Management: International and Leadership Perspective", WeihrichH.and Koontz H., 9th Edition, Pubs: McGraw Hill.	2012	
4	"The New Era of Management", Daft R.L., 11th Edition, Pubs: Cengage Learning.	2014	
5	"Principles & Practice of Management", Prasad L.M., 8th Edition, Pubs:	2015	

	Sultan Chand & Sons.	
6	"Management: Text and Cases", Rao V.S.P. and Krishna V.H., Pubs: Excel	2008
U	Books.	
7	"Management: Concept, Practice and Cases", Aswathappa K. and	2010
/	GhumanKarminder, Pubs: McGraw Hill Education.	
8	"Dynamics of Entrepreneurial Development & Management", Desai V., 5th	2012
0	Edition, Pubs: Himalaya Publishing House.	
9	"Projects: Planning, Analysis, Selection, Financing, Implementation and	2014
9	Review", Chandra P., 8th Edition, Pubs: McGraw-Hill Education (India).	
10	"Entrepreneur's Toolkit", Harvard Business School, Pubs: Harvard University	2004
10	Press.	
11	"Essentials of Project Management", Ramakrishna K, Pubs: PHI Learning.	2010
12	Harvard Business Review: Entrepreneur's Handbook	2018
13	WIPO Annual Publications	

Course Name	Professional Ethics
Course Code	SSM 5023
Credits	0.5
LTP	0-3-0

Total No. Tutorials:- 07

Course Objectives:

The main aim of this course is to provide basic knowledge about ethics, values, norms and standards and their importance in professional life.

Course Contents:

Sr.No	Course Contents	
		Tutorials
1.	Introduction to Ethics: Concept of Ethics – Nature, Scope, Sources,	2
	Types, Functions and Factors influencing Ethics.	
2.	Self-Awareness & Self Development: Concept of Self Awareness –	2
	Need, Elements, Self-Assessment – SWOT Analysis, Self-Concepts –	
	Self-Knowledge, Assertiveness and Self-Confidence, Self-Esteem,	
	Concept of Self-Development, Social Intelligence, Emotional	
	Intelligence, Managing Time and Stress, Positive Human Qualities (Self-	
	Efficacy, Empathy, Gratitude, Compassion, Forgiveness and Motivation	
3.	Ethics and Business: Concept of Business Ethics – Nature and	1
	Objectives. Ethical dilemmas in business ethics.	
4.	Professionalism in engineering and its relation to ethics: Ethics in	2
	Practice: Professional accountability, Roles of Professionals.	

Course Outcomes:

At th	At the end of the course:		
1.	The students will be able to distinguish between right and wrong in both personal and		
	professional life.		
2.	The students will learn about their strengths, weaknesses, opportunities & threats and		
	work enthusiastically to transform weaknesses into strengths and threats into		
	opportunities.		

Sr.No	Book Detail	Year of Publication
1.	"Business Ethics – Text and Cases", Murthy C.S.V., 1 st Edition,	2014
1.	Pubs: Himalaya Publishing House.	
	"The Curse of Self: Self-awareness, Egotism and the Quality of	2007
2.	Human Life", Leary M.R., 1st Edition, Pubs: Oxford University	
	Press.	
3.	"Business Ethics", Hartman L.P. and Chatterjee A., 3 rd Edition, Pubs:	2006
	Tata McGraw Hill	

4.	"Business Ethics and Professional Values", Rao A.B., Pubs: Excel	2006
	Books	
5	"Business Ethics – Concepts and Cases", Velasquez M.G.,	2001
5.	5 th Edition, Pubs: Prentice Hall	
6	"Issues and Ethics in the Helping Professions", Corey G., Corey M.S.	2010
6.	and Callanan P., 8 th Edition, Pubs: Brooks/Cole, Cengage Learning	
7.	"Theories of Personality", Hall C.S., Lindzey D. and Cambell J.B.,	1997
7.	4 th Edition, Pubs: Hamilton Printing Company	

PROGRAM CORE

Course Name	:	Physico-Chemical Process in Water & Wastewater Engineering
Course Code	:	CEM 5011
Credits	:	3
LTP	:	2-0-2
No. of	:	1-6
Segments		

Total No. of Lectures: 28 Total No. of Lab Hours: 28

Course Objectives:

	The main objectives of this course are:	
1.	To introduce the concept of water quality.	
2.	To understand the various physico-chemical unit processes and operations as applied	
	to water and wastewater systems.	
3.	To provide a hands on experience in environmental quality monitoring of Water and	
	wastewater systems.	

Course Contents:

Sr.	Course contents			
No.		Lectures		
1.	Water Quality Physical, chemical and biological parameters of water- Water Quality requirement - Potable water standards - Wastewater Effluent standards - Water quality indices			
2.	Water Purification Systems in Natural Systems Physical processes-chemical processes and biological processes - Primary, Secondary and tertiary treatment-Unit operations – unit processes.advance oxidation, Membrane, ion exchange etc.			
3.	Clarification, Sedimentation Types; Tube & Plate Settlers, Aeration& gas transfer; Coagulation & flocculation, coagulation processes, stability of colloids, destabilization of colloids, transport of colloidal particles, Clariflocculation.			
4.	Filtration Theory of granular media filtration; Classification of filters; slow sand filter and rapid sand filter; mechanism of filtration; modes of operation and operational problems; negative head and air binding; dual and multimedia filtration.	5		
5.	Adsorption Adsorption equilibria - adsorption isotherms, Disinfection - chlorine dioxide; chloramines; ozonation; UV radiation Ion Exchange-processes, Application Membrane Processes, Reverse osmosis, Ultrafiltration, Electrodyalisis.	5		
6.	Introduction to water supply system of smart cities and use of software EPANET	2		

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Testing of various physico- chemical properties (like BOD, COD, Chlorides, alkalinity, sulphates, nitrates etc) of water and wastewater, Project based testing of water & wastewater quality parameters	8
2	Project based testing of water quality parameters	10
3	Project based testing of wastewater quality parameters	10

Course Outcomes:

At the completion of this course, students will be able to:				
1.	Design various physico-chemical unit processes andoperations to achieve the desired			
	water quality in water and wastewater systems.			

Bibliography:

Sr. No.	Name of the Book/ Author/ Publisher	Year of Publication/ Reprint
1.	Water works engineering, S. R. Qasin. PHI, New Delhi	2015
2.	Environmental Engineering, Howard S. Peavy, Donald R. Rowe,	2015
	George Tchobanoglous Mc Graw Hill Publishing	
3.	Standard Methods for examination of water and wastewater: 23 rd	2017
	Edition APHA	

MOOCs on this course are available at:

- 1) https://www.Courses.edx.org/Courses/CourseV-I: T Singhua x
- 2) https://onlinecourses.nptel.ac.in (Course on Water Supply Engineering by IIT Madras by Prof. Ligy Philips at NPTEL.ac.in

Course Name	:	Environmental Chemistry and Microbiology
Course Code	:	CEM 5021
Credits	:	3
LTP	:	2-0-2
No. of	:	1-6
Segments		

Total No. of Lectures: 28 Total No. of Lab Hours: 28

Course Objectives:

	The main objective of this course are:
1	To familiarize the students with the chemical and biological principles as applied to
1.	Environmental Engineering.
2.	To apply these concepts to Water and Wastewater Treatment and Pollution Control.

Course Contents:

Sr.	Course Contents No.	
No.		Lectures
1.	Introduction Importance of Chemistry and Microbiology in Environmental Engineering; The related uses and applications. Catalysis, colloidal and surface chemistry, chemistry of organic pollutants, heavy metals and nanomaterials ,green chemical processes	4
2.	Chemical Equations Types, solutions, activity and activity coefficients, chemical equilibria, chemical thermodynamics.	2
3.	Acid Base Equilibria Equilibrium diagrams, carbonic acid system, buffering, Solubility Equilibria, effect of other solutes on salt solubility, removal of heavy metals.	2
4.	Oxidation Reduction Equilibria Ectrochemistry and electrochemical cells, stability diagrams measuring redox potentials.	3
5.	Water Stabilization Water softening and water conditioning, chemical precipitation, ion exchange.	2
6.	Basic of Quantitative Chemistry Analytical methods, instrumentation: Organic pollution: BOD, COD, And TOC.	2
7.	Microbiology Classification, identification, Taxonomy, Reproduction and growth, cultures & characteristics, Enzymes, Microbial metabolism - energy production, biosynthesis, Mixed and pure culture, Growth rate; Application.	7

8.	Fungi, Bacteria, Molds and Yeasts Algae, protozoa, viruses. Control of microorganisms.	3
9.	Microbiology of Domestic Water & Waste Water Industrial microbiology. Epidemiology of infectious diseases, microbial agents of diseases.	3

Lab Works:

Sr. No.	Lab Contents	No. of Hours
1.	Water & Wastewater Quality, Bacteriological Quality (like MPN, Plate	8
	Count etc.)	
2.	experiments involving use of GC-MS and Ion Chromatography	10
3	Air & Noise Testing, Project based testing of water & wastewater	10

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	The student is able apply the principles of Chemistry and Microbiology in		
	Environmental Engineering practice.		
2.	Analyze and interpret the environmental engineering systems from the chemistry and		
	microbiological point of view.		

Bibliography:

Sr.	Name of the Book/ Author/ Publisher	Year of
No.		Publication/
		Reprint
1.	Chemistry for Environmental Engineering: Sawyer, McGraw Hill Book	2015
	Company, New York.	
2.	Microbiology – Concepts and applications: Pelczar, McGraw Hill Book	2015
	Company, New York.	
3.	Process Chemistry for water and wastewater treatment: Benefield,	2015
	Printice-Hall Inc, New Jersey.	
4.	Microbiology for Environmental Scientists and Engineers: Gaudy and	2014
	Gaudy McGraw Hill Book Company, New York.	
5.	Standard Methods for examination of water and wastewater: 23 rd	2017
	Edition APHA	

MOOCs on this course are available at:

1) https://onlinecourses.nptel.ac.in (Course on Environmental Engineering-Chemical Processes by Prof. Bhanu Prakash Vellanki, Department of Civil Engineering, IIT Roorkee

PROGRAM ELECTIVE

Course Name	:	Solid and Hazardous Waste Management
Course Code	:	CEM 5101
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of	:	1-3
Segments		

Total Number of Lectures: 17 No. of Tutorials: 04

Course Objectives:

	The main objectives of the course are:
1.	To have knowledge of solid waste and management.

Course contents

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to Solid and Hazardous Wastes:	2
	Types and Sources of solid and hazardous wastes - Need for solid and	
	hazardous waste management - Legislations on management and handling of	
	municipal solid wastes, hazardous wastes, and biomedical wastes, Elements of	
	integrated waste management	
2.	Waste Characterization and Analysis:	3
	Waste generation rates - Composition - Hazardous Characteristics - TCLP	
	tests – waste sampling- Source reduction of wastes – Recycling and reuse.	
3.	Management of Solid Waste:	3
	Handling and segregation of wastes at source-storage and collection of	
	municipal solid wastes – Analysis of Collection systems - Need for transfer	
	and transport – Transfer stations - labeling and handling of hazardous wastes.	
4.	Processing of Waste:	3
	Waste processing – processing technologies – biological and chemical	
	conversion technologies - Composting - thermal conversion technologies -	
	energy recovery –incineration – solidification and stabilization of hazardous	
	wastes - treatment of biomedical wastes Biomass waste valorisation	
5.	Disposal on Landfill:	3
	Disposal in landfills - site selection - design and operation of sanitary	
	landfills- secure landfills and landfill bioreactors – leachate and landfill gas	
	management – landfill closure and environmental monitoring – landfill	
	remediation.	
6.	MSW Management of Smart Cities, e-waste, bio-medical waste,	3
	hazardous waste management, IOT technologies involving solid &	
	hazardous waste management.	

Course outcomes:

At the completion of this course, students will be able to:		
1.	Students will be able to know processing and handling of solid waste in better way.	

Bibliography:

	onography.				
Sr.	Name of the Book/ Author/ Publisher	Year of			
No.		Publication/Reprint			
1.	Integrated Solid Waste Management, George Tchobanoglous,	2013			
	Hilary Theisen and Samuel A, Vigil, , McGraw- Hill, New York.				
2.	Manual on Municipal Solid waste management, Central Public	2000			
	Health and Environmental Engineering Organization (CPHEEO),				
	Government of India (GOI), New Delhi.				

MOOCs on this course are available at:

1. https://onlinecourses.nptel.ac.in(Course on Integrated waste management for a Smart City by Prof. B K Dubey of IIT, Kharagpur)

Course Name	:	Ecological and Ecosystems Engineering
Course Code	:	CEM 5102
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of Segments		1-3

Total Number of Lectures: 17 No. of Tutorials: 04

Course Objectives:

	The main objectives of the course are:
1.	To understand the concept and application of ecological modeling.
2.	To familiarize the students with the basics of ecological systems and introduce them to the
 .	concept of ecological engineering.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Development and Evolution of ecosystems- Principles and concepts	1
2.	Energy flow and material cycling- productivity- classification of ecotechnology- ecological engineering.	3
3.	Classification of systems- Structural and functional interactions of environmental systems- Mechanisms of steady- state maintenance in open and closed systems.	3
4.	Modeling and eco-technology- Classification of ecological models- Applications- Ecological economics- Self – organizing design and processes- Multi seeded microcosms.	3
5.	Interface coupling in the ecological systems- concepts or energy-determination of sustainable loading of ecosystems.	3
6.	Eco-sanitation; soil infiltration systems- Wetlands and ponds- Source Separation systems- Aqua cultural systems- Agro ecosystems- Detritus based Treatment for solid wastes –marine systems- Case studies.	4

Course outcomes:

At the	At the completion of this course, students will be able to:		
1.	The students shall able to apply the concept of ecological engineering in real life		
	environmental engineering problems.		

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	Ecological Engineering: Principles and Practice, Kangas, P.C and	2003
	Kangas, P., Lewis Publishers, New York.	
2.	Ecological Engineering for Wastewater Treatment, Etnier, C. and	2007
	Guterstam, B., Lewis Publishers, New York	
3.	Basic Ecology, E .P. Odum, H.S Publication	2000
4.	Energy and Ecological Modelling, W.J Mitch, R. W. Bosserman and J N	2001
	Klopatik, Elsevier Publication	

Course Name	:	Environmental Geo-Technology
Course Code	:	CEM 5103
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of Segments	:	1-3

Total Number of Lectures: 17

No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:
1.	To know the geo-techniques used in environment.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Soil Profile:	2
	Soil as a multiphase system; Soil – environment interactions; Properties of	
	water in relation to porous media; Water cycle with special reference to soil	
	medium.	
2.	Soil Mineralogy:	2
	Soil mineralogy; significance of mineralogy in determining soil behavior;	
	Mineralogical characterization.	
3.	Mechanisms of Soil-Water Interactions:	2
	Diffuse double layer models; Force of attraction and repulsion; Soil- Water-	
	contaminant interaction; Theories of Ion exchange; Influence of organic and	
	inorganic chemical interaction.	
4.	Soil Mechanics:	3
	Introduction to unsaturated soil mechanics; water retention property and soil-	
	water characteristic curve; flow of water in unsaturated soil.	
5.	Waste & its Transport in Soil:	3
	Concepts of waste containment facilities; desirable properties of soil;	
	contaminant transport and retention; contaminated site remediation.	
6.	Remedial Techniques:	3
	Introduction to advanced soil characterization techniques; volumetric water	
	content; gas permeation in soil; electrical and thermal properties; pore –size	
	distribution; contaminant analysis.	
7.	AnAqSimEDU (analytic aquifer simulator-educational)	2

Course Outcomes:

At the	e completion of this course, students will be able to:
1.	Better understanding of soil science and methods to preserve it.

Sr. No.	Name of the Book/ Author/ Publisher:	Year of Publication/Reprint
1.	Funtamentals of Soil Behavior, Mitchell, J.K and Soga, K, John Wiley and Sons Inc.	2005

2.	Introduction to Environmental Geotechnology, Fang, H-Y, , CRS	2016
	press	
3.	Geotechnical Practice for Waste Disposal, Daniel, D.E, , Chapman	2012
	and Hall	
4.	Geotechnical and Geoenvironmental Engineering Handbook,	2001
	Rowe, R. K., Kluwer Academic Publishers	
5.	Geo-environmental Engineering Principles and Applications,	2000
	Reddi, L.N. And Inyang, H.F, Marcel Dekker Inc.	

Course Name	:	Environmental Hydraulics & Hydrology
Course Code	:	CEM 5104
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of Segments	:	1-3

Total Number of Lectures: 17

No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:
1.	To familiarize the students with the basics of hydrology and introduce them to the concept
	of hydraulics.
2.	To understand the concept and application of hydrology modeling.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Uniform and Non-uniform flow in channels and sewers	4
2.	Hydrologic cycle and its interaction with human activity, Hydrologic	3
	processes, Transport processes, Porous medium flow.	
3.	Atmospheric and subsurface water, Surface water	4
4.	Hydrologic analysis, Hydrologic statistics	4
5.	Introduction to softwares	2
	FLO-2D Software, EPANET	

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	. The students shall able to apply the concept of hydrology engineering in real life		
	environmental engineering problems.		

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	Environmental Hydraulics of Open Channel Flows, Chanson, H.,	2004
	Butterworth-Heinemann.	
2.	Applied Hydrology, Chow, V.T., Maidment, D.R. and Mays,	2010
	L.W., McGraw Hill Inc.	
3.	Open Channel Hydraulics, Chow, V.T., McGraw Hill Inc.	2009

Course Name	:	Principles and Design of Water Supply And Treatment System
Course Code	:	CEM 5105
Credits	:	1.5
LTP	:	2-1-0
No. of	:	1-3
Segments		

Total Number of Lectures: 14 No. of Tutorials: 07

Course Objectives:

	The main objectives of this course are:
1.	To understand the process and designing of the subject

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction:	2
	Definition and Concepts: Water sources, philosophy of water treatment,	
	review of water quality characteristics and potable and industrial waste	
	standard unit operations, unit processes	
2.	Water Supply:	2
	Theory and design of water supply systems; Estimation of water quantity,	
	Review of flow in pipes and open channel flow, Review of pump	
	characteristics.	
3.	Distribution Network:	3
	Design of water distribution networks& Smart water distribution systems	
4.	Water Treatment Techniques:	2
	Theory and design of conventional unit operations used in water treatment;	
	Sedimentation, Floatation, Coagulation, Flocculation, Filtration And	
	Disinfection Process; Theory and design of advanced unit operation used in	
	water treatment; Membrane Process, Ion Exchange, Aeration/Stripping,	
	Precipitation, Adsorption, Oxidation-Reduction And Advanced Oxidation	
	Processes.	
5.	Treatment Plant Designing:	2
	Water Treatment Plant Design; selection of raw water source, Planning and	
	Siting of Water Treatment Plant; Hydraulics of Water Treatment Plant,	
	Chemical Requirement and Residuals Management.	
6.	Introduction to softwares	3
	WATERCAD& PFCALC	

Course Outcomes:

At the completion of this course, students will be able to:			
1.	Students able to do the implementation of knowledge into designing of the treatment		
	plant.		

Bibliography:

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	Water works engineering, S.R Qasim, PHI	2015
2.	Environmental Engineering, Peavy Rowe Tchobanoglous, McGraw Hill Inc	2015

MOOCs on this course are available at:

https://www.Courses.edx.org (Course on Water Management by Delf University)

Course Name	:	Environmental System Analysis
Course Code	:	CEM 5201
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of	:	4-6
Segments		

Total Number of Lectures: 17 No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:		
1.	To learn about analytical & design methods for environmental systems.		
2.	2. To study various optimization models for environmental systems.		
3.	3. To study various stochastic models for environmental systems		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	System Engineering:	4
	Analysis – Design- Synthesis – applications to environmental engineering	
	Systems.	
2.	Role of Optimization Models:	5
	Deterministic models/ linear programming, Dynamics programming,	
	Separable and Nonlinear program models. Formulation of objective	
	functions and constraints for environmental engineering planning and	
	design.	
3.	Probabilistic Models:	4
	Fuzzy models – Simulation models.	
4.	Modern Tools:	4
	Experts - Neural Networks - Genetic Algorithm- Case studies. Remote	
	Sensing & GIS technologies	

Course Outcomes:

At the	At the completion of this course, students will be able to:		
1.	1. Knowledge of analytical & design methods for environmental systems.		
2.	Knowledge of optimization models for environmental systems.		
3.	Knowledge of stochastic models for environmental systems.		

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	Environmental System Engineering, Rich L.G., McGraw Hill.	1973
2.	System Analysis & Water Quality control, Thoman R.V., McGraw Hill.	1978
3.	Environmental System Analysis with MATLAB, Stefano Marsili-Libelli,	2016
	CRC Press	
4.	Environmental Systems - Philosophy, Analysis and Control, Robert	2018
	Bennett, Richard Chorley, Princeton Legacy Library.	

Course Name	:	Environmental Biotechnology
Course Code	:	CEM 5202
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of Segments	:	4 to 6

Total Number of Lectures: 17

No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:
1.	To have the better knowledge of bio-techniques on environment

Course Contents:

Sr.	Course Contents:	No. of	
No.		Lectures	
1.	Introduction to Environmental Biotechnology:	4	
	Principles and concepts - usefulness to mankind.		
2.	Degradation of Pollutants:	4	
	Degradation of high concentrated toxic pollutants- halogenated, non-		
	halogenated, petroleum hydrocarbons, metals - Mechanisms of detoxification		
	– oxidation - dehalogenation - biotransformation of metals - biodegradation of		
	solid wastes.		
3.	Biotechnology Remedies:	5	
	Biotechnological remedies for environmental pollution - decontamination of		
	groundwater - bioremediation - Production of proteins - bio fertilizers -		
	Physical, chemical and Microbiological factors of composting – health risk –		
	pathogens – odor management – Microbial cell/enzyme technology – adapted		
	microorganisms - biological removal of Nutrients - algal biotechnology-		
	extra cellular polymers - Biogas technology, Concept of rDNA technology -		
	expression vectors – cloning of DNA – mutation – construction of microbial		
	strains - radioactive probes - protoplast fusion technology –applications.		
4.	Impact on Environment:	4	
	Environmental effects and ethics of microbial technology-genetically		
	engineered organisms- Microbial containment-Risk assessment.		

Course outcomes:

At the completion of this course, students will be able to:		
1.	1. To know the importance of biological techniques and application of them.	

Sr. No.	Name of the Book/ Author/ Publisher:	Year of Publication/Reprint	
1.	Biological degradation and Bioremediation of toxic chemicals,	2010	
	Chaudhury, G.R., Dioscorides Press, Oregon.		
2.	Biological degradation of wastes, Martin A.M, Elsevier	2014	

	Applied Science, London.	
3.	Environmental Biotechnology: Principles and Applications, Bruce E. Rittmann, Perry L. McCarty Tata McGraw-Hill Education.	2012

MOOCs on this course are available at:

https://www.onlinecourses.nptel.ac.in (Course on Environmental Biotechnology)

Course Name	:	FATE and Transport of Contaminants in NaturalSystem	
Course Code	:	CEM 5203	
Credits	:	1.5	
LTP	:	2.5-0.5-0	
No. of	:	4-6	
Segments			

Total Number of Lectures: 17
Total No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:
1.	To learn about physico- chemical and bio transformations of pollutants in natural systems.
2.	To study various models of predicting contaminant/ pollutant transport.

Course contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction	1
2.	Modeling of volatilization, sorption / desorption	3
3.	Chemical transformations, photochemical transformation.	3
4.	Biological transformation and bioturbation	2
5.	Concepts of scale in natural system, brief review of mass, momentum and	2
	energy balance, advection, molecular diffusion, dispersion.	
6.	Modeling of rivers, lakes, large lakes, sediments, estuaries, wetlands,	2
	subsurface, flow and transport.	
7.	Finite difference and linear algebraic methods to solve the system	2
	equations. Some special models.	
8.	Introduction to MODFLOW, MATLAB	2

Course Outcomes:

\sim 0	Course outcomes.			
At the completion of this course, students will be able to:				
1.	Understanding of the natural physic chemical and bio transformations of pollutants.			
2.	2. Knowledge of various models of predicting contaminant/ pollutant transport.			

Bibliography:

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	Biostatistical Analysis, Zar, J.H., Pearson Education,.	2008
2.	Water Quality Engineering in Natural Systems, David A.	2013
	Chin, Wiley	
3.	Groundwater Hydrology, Todd D.K., Wiley	2014

MOOCs on this course are available at:

1. www.ocw.mit(Course no. 1.061)

Course Name	:	Remote Sensing & GIS for Environmental Engineering
Course Code	:	CEM 5204
Credits	:	1.5
LTP	:	2.5-0.5-0
No. of Segments	:	4-6

Total No. of Lectures: 17 Total No. of Tutorials: 04

Course Objectives:

	The main objectives of this course are:
1.	Expose the students with concept of digital mapping.
2.	To make them aware of recent advancements/software in surveying like Remote sending,
	digital photogrammetric, GIS, DIP etc.

Course contents:

Sr. No.	Course contents	No. of Lectures
1.	Modern Trends in Surveying and Mapping of Environmental Systems: Digital Mapping, Uses and applications, data collection techniques (Conventional and Non-conventional), Present Status in India and abroad	
2.	Aerial Photogrammetry Introduction, types, Stereoscopy, Scale of a photograph, flight planning, Mosaics	2
3.	Geographical Information System (GIS) in relation to Environmental Systems Introduction, advantages, objectives of GIS, Definitions of GIS, Components of GIS, Overlay analysis, Digital Terrain Modelling, Digital Elevation Model Applications of GIS in various engineering fields, Four M's, Elements of Image visualization	2
4.	Introduction to Remote Sensing (RS) of Natural Environmental Systems Introduction, EM spectrum, Ideal RS System, Real RS System, Visual Image interpretation, active and passive remote sensing, Reflectance; spectral reflectance of land covers; Spectral characteristics of solar radiation; energy interaction in the atmosphere; energy interactions with the Earth's surface, Spectral reflectance curves, Resolution	2
5.	Digital Image Processing (DIP) Introduction, Histogram and image statistics, Remote Sensing Image distortion and rectification: Radiometric errors and Geometric errors. Image Enhancement techniques, Image classification – Supervised and Unsupervised classification, Formats	2
6.	Global Positioning System Introduction, GPS, DGPS, Applications	2
7.	Smart City & Geospatial Technology Introduction, Applications of GIS/RS in smart city.	1

8.	Software demonstrations and working GIS/RS software	2
9.	Remote Sensing & GIS Tools for Environmental systems	2

Course outcomes:

At the	At the completion of this course, students will be able to:			
1.	. This course intends to make students aware recent advancements in surveying.			
2.	They will be able to understand various terms in Geospatial Industry and relate with			
	applications of RS/GIS in Smart City initiatives.			

Bibliography:

	Dibnography.			
Sr.	Name of the Book/ Author/ Publisher:	Year of Publication/		
No.	Reprint			
1.	Geomatics Engineering, Manoj Arora and R C Barjatiya, Nem Chand Brothers, Roorkee.	2011		
2.	Principles of GIS, Peter A. Burrough, Rachael A., Oxford University Press	2014		
3.	Remote Sensing and Image Interpretation, Lillesand and Kiefer, Wiley Publishers	2010		
4.	Introduction to GIS, Kang-tsung, Tata McGraw Hill, 5th Edition	2016		
5.	Introduction to Remote sensing, Campbell & Wynne, Guilford Press	2014		

MOOCs on this course are available at:

1. https://www.coursera.org/spatial-analysis (Course on Geospatial and Environmental Analysis, University of California, Davis)

ENGINEERING MATHEMATICS

Engineering Mathematics 1 (EM1)

Course Name	:	FOURIER TRANSFORMS
Course Code	:	EMM 5011
Credits	:	01
LTP	:	2-1-0
Segments	:	1-2

Total No. of Lectures – 10, Tutorials -5

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the concept of Fourier transform and be able to compute it for		
	standard examples.		
2	To make the students able to apply Fourier transforms to solve differential equations and partial		
	differential equations.		

Course contents:

S.	Course Contents	No. of
No		Lectures
1	Fourier Transforms: Fourier Integral formulas, Definition and examples, Basic properties, Fourier cosine and sine transforms and examples, Basic properties of Fourier cosine and sine transforms, Multiple Fourier transforms.	05
2	Fast Fourier Transforms and Short Term Fourier Transforms: Definition and examples, Basic properties, Applications.	05

Course Outcomes:

At the	At the end of the course, students will be able to:			
1	Solve differential equations by using Fourier transforms			
2	2 Solve partial differential equations by using Fourier transforms			
3	Apply FFT and STFT to engineering problems			

S. No.	Name of Book / Authors / Publishers	Year of Publication/
		Edition
1	"Integral Transforms and Their Applications", LoknathDebnath, CRC Press, Inc.,	1995.
2	"Integral Transforms and their Applications", Brian Davies, 3rd Edition, Springer-	2001
	Verlag, New York,Inc,	
3	"Fourier Transform and Its Applications", Ronald N. Bracewell, 2nd Edition,	1986
	McGraw-Hill Inc.,US,	

Engineering Mathematics 2 (EM2)

Course Name	:	NUMERICAL METHODS
Course Code	:	EMM 5013
Credits	:	01
LTP	:	2-0-2
Segments	:	3-4

Total No. of Lectures – 10, Practical -10

Course Objectives:

The main Objectives of this course are:

1	To make the students understand the basics of numerical methods.
2	To make the students able to solve problems on system of linear equations and Interpolation by
	numerical methods.

Course contents:

S.	Course Contents		
No.		Lectures	
1	Error Analysis: Definition and sources of errors, Propagation of errors, Floating-point arithmetic	02	
	and rounding errors.		
2	Interpolation: Interpolation using Finite differences, Numerical Differentiation and Numerical	04	
	integration, Trapezoidal and Simpson's rules.		
3	Numerical Solution of Differential Equations: Picard's method, Taylor series method, Euler	04	
	and modified Euler methods, Runge-Kutta methods, Predictor-Corrector method.		

Lab Work:

S. No.	Lab. Contents		
		Hours	
1.	Solving Interpolation, Numerical Differentiation and Numerical integration problems using Mathematica.	04	
2.	Solving Differential equations numerically using Mathematica.	06	

Course Outcomes:

By the end of the course, the students will be able to solve the following by numerical methods:

- 1. Problems on Interpolation
- 2. Problems on Differentiation, Integration.
- 3. Solve differential equations.

S. No.	Name of Book / Authors / Publishers	Year of Publication/
		Edition
1	"Introduction to Numerical Analysis", Atkinson K. E., John Wiley.	1989
2	"Applied Numerical Analysis", Gerald C. F. and Wheatley P. O., Pearson	2004
3	"Numerical Methods for Scientific and Engineering Computation", Jain M. K., Iyengar	2004
	S.R.K. and Jain R. K., New Age International Publisher.	
4	"Elements of Numerical Analysis", Gupta R.S., Macmillan India Ltd .	2008

Engineering Mathematics 3 (EM3)

Course Name	:	OPTIMIZATION TECHNIQUES
Course Code	:	EMM 5019
Credits	:	01
LTP	:	2-0-2
Segments	:	5-6

Total No. of Lectures – 10, Practical -10

Course Objectives: The main Objectives of this course are:

1	To make the students understand the need of Optimization Techniques and develop the ability to
	form mathematical model of optimization problems.
2	To make the students able to identify and solve linear and non-linear models of optimization

Course contents:

S.	Course Contents	
No.		Lectures
1	Linear Programming: Formulation, Graphical solution, Simplex method.	04
2	Non Linear Optimization Techniques:	06
	Unconstrained problems - Necessary and sufficient conditions for extreme points, Newton's	
	method, Guass- Newton method, Parallel axis method.	
	Constrained problems - Lagrangean method, KKT conditions, Nelder Mead method.	

Lab Work:

S. No.	Lab. Contents	No. of Hours
1.	Solving linear problems using Mathematica/MATLAB.	04
2.	Solving non-linear problems using Mathematica/MATLAB.	06

Course Outcomes:

1	The students are able to form mathematical model of optimization problems.
2	The students are able to distinguish between linear and nonlinear models.
3	The students are able to solve simple problems using Mathematica/MATLAB

S. No.	Name of Book / Authors / Publishers	Year of Publication/
		Edition
1	"Operations Research" ,Ravindran , Phillips , and Solberg , 2 nd edition, John	2000
	Wiley & sons.	
2	"Engineering Optimization", S S Rao, 3 nd edition, New Age.	2000
3	"Operations Research", Kantiswarup, Gupta P.K. & Sultan Chand & Sons	2007
4	"Operations Research", Sharma S.D., Kedarnath, Ramnath&Company.	1994
5	"Operations Research", Bronson R, Shaum's Outline Series .	1997

SEMESTER-II

PROGRAM CORE

Course Name	:	Design of Experiments & Research Methodology
Course Code	:	DRM 5011
Credits	:	3
LTP	:	2-1-0
Segments	:	1-6

Course Objectives

The main Objectives of this course are:		
1	To introduce the fundamentals of Statistical techniques, Sampling techniques, and Data	
	collection and their interpretation.	
2	To understand concept of research, need for research, types of research and steps in	
	conducting research.	

Total No. of contact hour: 42 (L= 28+T=14)

S.No.	Course Content	No. of Lectures
1	Design of Experiment Principles of Experimental design, sampling methods, probability sampling	3
2	Modeling Introduction to modeling, types of models, development of mathematical models	4
3	Random variables Random variables and its properties, probability distributions, probabilistic model estimation and its assessment	6
4	Random Variables Data Analysis Single and multi variables data analysis, estimation of parameters, splinessmoothing, Residual analysis, Analysis of Variances	5
4	Random Variates Simulation, Monte Carlo Method, Queuing Theory, Markovian process	3
5	Geostatistics Introduction to Geostatistics, Geostatistical data analysis methods	3
6	Stochastic Processes Time series analysis, model identification, forecast and uncertainty analysis	2
7	Research Report Writing Research objectives formulation, literature collection, data analysis methods, report writing and conclusions	2

Course Outcomes

At the completion of this course, students will be able to:			
1	make use of various Research methodologies and its applications in the relevant field of engineering.		
2	Organize and conduct research (advanced project) in a more appropriate manner		

Bibliography			
S.No.	Name of Book/Authors/Publishers	Year of Publication/ Reprint	
1	Probability and Statistics for Engineers and scientists, Walpole, Myers, Myers and Ye, Pearson Education.	7th edition, 2002	
2	Statistics in Research, BernandOstle and Richard N.Mensing, Oxford & IBH Pub Co.	3rd edition, 1975	
3	Probability and Statistics in Engineering, Hines, Montgomery, Goldsman and Borror, John Wiley & Sons.	4th edition, 2003	
4	Experimental design, Theory & application, Federer, Oxford & IBH pub Co.	1955	
5	Introduction to probability & statistics for Engineers and scientists, Sheldon M. Ross Elsevier Academic press, California, USA	2014	

MOOCs on this course are available at:

- 1. http://professional.mit.edu/programs/short-programs/design-and-analysis-experiments
 By Prof. Paul Berger, MIT Professional Education
- 2. https://nptel.ac.in/courses/107108011/

By Prof. AmareshChakrabarti, Indian Institute of Science, Bangalore

Course Name	:	Biological Process Design for Wastewater Treatment
Course Code	:	CEM 5031
Credits	:	3
LTP	:	202
Segments	:	1 to 6

Total No. of Lectures: 28
Total No. of Lab Hours: 28

Course Objectives:

	The main objectives of this course are:								
1.	To introduce the various biological process in wastewater treatment: Design and application.								
2.	To provide a hands on experience in environmental quality monitoring of Air, Soil and								
	water systems.								

Course Contents:

Sr.	Course contents			
No.	Course contents			
1.	Constituents of wastewaters - sources -significant parameter -			
	fundamentals of process kinetics, zero order, first order, second order			
1.	reactions, enzyme reactions – bio reactors- types-classification – design	1		
	principles.			
2.	Design of wastewater treatment systems-primary, secondary and tertiary	5		
۷.	treatments	3		
3.	Evaluation of bio-kinetic parameters- activated sludge and its process -	3		
3.	modifications, biological nitrification and de nitrification.	3		
	Aeration- fundamentals of gas transfer - attached growth biological			
4.	treatment systems trickling filters-rotating biological contactors - activated	6		
	biofilters.			
5.	Waste stabilization ponds and lagoons: aerobic pond, facultative pond,	5		
].	anaerobic ponds- polishing ponds, aerated lagoons.	3		
	Anaerobic processes-process fundamentals-standard, high rate and hybrid			
6.	reactors, anaerobic filters-expanded/fluidized bed reactors – up flow	6		
	anaerobic sludge blanket reactors, expanded granular bed reactors- two stage	6		
	/ phase anaerobic reactors, sludge digestion ,sludge disposal.			
7.	Introduction to MATLAB Software	2		

Lab Work:

Sr. No.	Lab Contents	No. of Lectures
1.	Air Quality Monitoring & Measurements, Soil Pollution Parameters &	28
	Measurements, Industrial Waste Water Characteristics, Absorption and	
	Adsorption Kinetics Studies.	

Course Outcomes:

At the c	At the completion of this course, students will be able to:				
	analyse and design the biological processes in wastewater treatment. He shall be able to				
1.	trouble shoot the biological wastewater treatment systems.				
2.	making measurements and interpretation of				
	a. Air quality				
	b. Soil pollution				
	c. Industrial wastewater characteristics				
	d. Absorption and adsorption Kinetics				

Bibliography:

Sr. No.	Name/ Author/Publisher	Year of Publication/ Reprint
1.	"Chemistry for Environmental Engineering", Sawyer, C.N.,	2003
	McCarty, P.L. and Parkin, G.F., Tata, McGrawHill, New Delhi.	
2.	"Microbiology", Pelczar, M.J., Chan E.C.S. and Krieg, N.R. Tata	2002
	McGraw Hill, New Delhi.	
3.	Standard methods for examination of water & wastewater by	2017
	AWWA.	

MOOC'S are available at:

- 1. https://www.edx.org/course/urban-sewage-treatment-delftx-ctb3365stx-1
- 2. https://nptel.ac.in/courses/105105048/ Wastewater Management

Course Name	:	Air and Noise Pollution & Control
Course Code	:	CEM 5041
Credits	:	3
LTP	:	300
Segments	:	1 to 6

Course Objectives:

	The main objectives of this course are:
1.	To familiarize the students with the basics of air pollution including atmospheric physics and chemistry
2.	To apply these concepts to Air and noise Pollution Control and Environmental Management

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to air pollution – environmental engineering significance – global issues – units	2
2.	Effects of air pollution – visibility – basic calculations Atmospheric composition – temperature profile	2
3.	Meteorology - lapse rate – stability conditions	4
4.	Maximum mixing depth – plume behaviour	2
5.	Dispersion – modelling – engineering decisions – maxi ground level concentration - effective stack height	10
6.	Air pollution sampling – Stack monitoring	2
7.	Engineered systems of AP control – particulates – gaseous pollutants, Vehicular AP – models – control measures	9
8.	Air pollution control regulations – laws – Standards	2
9.	Noise pollutionand control	7
10.	Introduction to Air Pollution Modelling Software's: CALINE4, HIWAY2	2

Course Outcomes:

At the completion of this course, students will be able to:		
1.	understand the importance of air and noise pollution.	
2.	model the air and noise pollution and design control devices.	

Bibliography:

Sr. No.	Name of the Book/ Author/ Publisher	Year of Publication/ Reprint
1.	"Air Pollution", Perkins, H C, McGraw Hill Book Company,	1974
	New York.	
2.	"Environmental Pollution Control Engineering", Rao, C S, New	2007
	Age Pub. New Delhi	
3.	"Air Pollution: Its origin and control", Wark, K and Warner, C	1998
	F., Harper and Row Pub. New York	
4.	"Environmental Engineering, A Design Approach", Sincero, A P	1996
	and Sincero, GA, Printice Hall Pub. New Delhi	

MOOC'S are available at:

- 1. <u>https://nptel.ac.in/courses/105104099/</u> Environmental Air Pollution
- 2. https://nptel.ac.in/courses/105101087/03-Ltexhtml/p6/p.html Noise Pollution

PROGRAM ELECTIVE

Course Name	:	Environmental Impact Assessment
Course Code	:	CEM 5301
Credits	:	1.5
LTP	:	300
Segments	:	1-3

Course Objectives:

Ī		The main objectives of this course are:		
Ī	1.	To learn the concept and methodology of EIA and its documentation.		
	2.	To learn the planning and mitigation methods		

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Evolution of EIA: Concepts – Methodologies – Screening- Scoping- Base line studies- Mitigation – Matrices - Check List.	2
2.	Rapid and comprehensive EIA: Legislative and Environmental Clearance procedures in India- Predication tools for EIA.	4
3.	3. Assessment of impacts: Air – Water – Soil- Noise- Biological.	
4.	Socio Cultural Environment: Public participation- resettlement and rehabilitation.	3
5.	Documentation of EIA: Environmental management Plan- Post Project monitoring- Environmental Audit- Life cycle Assessment – EMS – case studies in EIA.	9

Course Outcomes:

At the end of the course, students will have:				
1.	1. Knowledge about EIA tools & methodologies, auditing and documentation of EIA.			
2.	2. Knowledge about environment management systems and planning for pollution control			

Sr. No	Name of Book/ Authors/ Publisher	Year of Publication/Reprint
1.	"Methods of Environmental Impact Assessment", Peter	2000
	Morris, UBC Press/ Vancouver	
2.	"Introduction to Environmental Impact Assessment: Guide to	2006
	Principles and Practice", Bram F. N., Oxford University Press	

Course Name	:	Surface and Groundwater Modelling
Course Code	:	CEM 5302
Credits	:	1.5
LTP	:	3-0-0
Segments	:	1-3

Course Objectives:

	The main objectives of the course are:			
1.	To learn about surface water hydrology.			
2.	To learn about groundwater- occurrence and movement.			
3.	To study well designing.			

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Land Processes – Subsurface and Channel Processes- Precipitation – Rain gauge network, Abstractions, Infiltration, Evaporation, Transpiration, Process and models	4
2.	Unit Hydrograph & S curve hydrograph, Dimensionless unit hydrograph, GUIH, Watershed Model and Conceptual Models.	4
3.	Occurrence and Movement of Ground water, Properties of aquifer, Groundwater flow equations, DupuitForchheimer assumptions, Well hydraulics, Partial penetration of wells, Interference of wells, Collector wells and Infiltration galleries.	4
4.	Pumping tests, Analysis for unconfined and non leaky and leaky confined aquifer and water table aquifer, locating hydro geologic boundaries, Well design criteria.	5
5.	Natural and Artificial Recharge of Ground water- Salt water intrusion, Application of Finite Difference in ground water.	4

Course Outcomes:

At the completion of this course, students will have:		
1.	Knowledge about the surface water hydrology	
2.	Knowledge of Ground Water Aquifer development methods	

Bibliography:

Sr.	Name of the Book/ Author/ Publisher	Year of
No.		Publication/Reprint
1.	"Applied Hydrology", VenTe Chow, Mc Graw Hill Science	2013
	Publishers	
2.	"Elementary Hydrology", Vijay Singh, Prentice Hall	1994
3.	"GroundWater", Raghunath, Mc Graw Hill.	2007
4.	"Hydraulics of Groundwater", Bear, J., Mc Graw Hill.	2007

MOOCs are available at:

1. https://nptel.ac.in/courses/105105042/40

Groundwater Hydrology Prof. AnirbanDhar, Department of Civil Engineering, Indian Institute of Technology – Kharaghpur

Course Name	:	Environmental Systems Modelling
Course Code	:	CEM 5303
Credits	:	1.5
LTP	:	3-0-0
Segments	:	1-3

Course Objectives:

	The main objectives of the course are:
1.	To understand the concept of system and its modeling.
2.	To learn different techniques used in modelling.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Mathematical modelling and simulation, Defining systems and its components, Types of models and their applications.	3
2.	Models for Fate and Transport of Contaminants	2
3.	Modelling of volatilization, chemical transformations, sorption/desorption, photochemical transformations, biological transformations. Brief review of mass, momentum and energy balance, advection, molecular diffusion, dispersion, their application in modelling of rivers, lakes, sediments, wetlands, subsurface flow and transport, air pollution modelling.	5
4.	Introduction to Soft Computing Techniques-Fuzzy set theory and logic, Fuzzy MCDM and FRBS, simple applications in environmental engineering. Neural networks and Genetic Algorithms.	6
5.	Introduction to GIS, concepts and data base structure, introduction to GIS software GIS Applications in Environmental Engineering. Introduction to Remote Sensing & its Applications in Environmental Engineering.	5

Course outcomes:

	- · · · · · · · · · · · · · · · · · · ·		
At the completion of this course, students will be able to:			
1.	make use of the software packages and its application in civil engineering projects		
2.	Understand the various phenomena involved in pollution diffusion & dispersion		

Bibliography:

Sr.	Name of the Book/ Author/ Publisher	Year of
No.		Publication/Reprint
1.	"Integrated Environmental Modeling - Pollutant Transport,	2005
	Fate, and Risk in the Environment", Ramaswami, A, Milford, J	
	B, Small, M. J., John Wiley & Sons.	
2.	"Principles of Geographical Information Systems", Burrough,	1998
	P.A. and McDonnell, R.A., Oxford University Press.	

MOOCs are available at:

 $1. \ https://www.coursera.org/learn/modeling-simulation-natural-processes$

Course Name	:	Energy Systems and Environment
Course Code	:	CEM 5304
Credits	:	1.5
LTP	:	3-0-0
Segments	:	1-3

Course Objectives:

		The main objectives of the course are:			
	1.	To familiarize the students with the basics of energy systems in relation to environment			
Ī	2.	To explore the energy conversion choices to determine viable means of reducing the			
		environmental impact of energy conversion that are economically and politically			
		acceptable, and technologically feasible.			

Course contents:

Sr. No.	Course contents	No. of Lectures
1.	Fundamental concepts of energy and environment	1
2.	Energy sources – conventional and non - conventional	1
3.	Energy generation – basics and environmental issues/impact	3
4.	Non-conventional sources – options, technology and issues	5
5.	Energy management – conservation, audit, modelling	3
6.	Case studies	4
7.	New sources and future energy problems, policies	4

Course outcomes:

At the completion of this course, students will be able to:		
1.	Understand the interrelationship between energy and environment.	
2.	Making decision with respect energy options on an environmental perspective	

Bibliography:

Sr. No.	Name of the Book/ Author/ Publisher	Year of Publication/ Reprint
1.	"Non-conventional energy sources", GD Rai, Khanna Pub.	2005
2.	"Energy Management Principles", Smith, Pergamon Press	2000
3.	"Introduction to Chemical Engineering Thermodynamics" J.M	2001
	Smith, H.C Van Ness, McGraw Hill.	

MOOCs are available at:

1. https://www.edx.org/course/energy-within-environmental-constraints-0

Course Name	:	Industrial Wastewater Management
Course Code	:	CEM 5401
Credits	:	1.5
LTP	:	300
Segments	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To learn about effluent treatment methods.
2.	To learn about essence of effluent and sludge management vis-à-vis EMS (ISO14000)

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Sources and types of industrial wastewater- Environmental impacts- Regulatory requirements- generation rates- characterization – Toxicity and Bioassay tests.	3
2.	Prevention vs Control of Industrial Pollution – Source reduction techniques- Waste Audit- Evaluation of pollution prevention options.	3
3.	Waste minimization- Equalization- Neutralization- Oil Separation- Flotation- Precipitation—Heavy metal Removal- adsorption- Aerobic and Anaerobic biological treatment- Sequencing batch reactors- chemical oxidation - ozonation- photocatalysis- Wet Air Oxidation - Evaporation - Ion Exchange- Membrane Technologies- Nutrient removal.	7
4.	Individual and Common Effluent Treatment Plants- Zero effluent discharge systems- wastewater reuse- Disposal of effluent on land- Quantification, Characteristics and disposal of sludge.	3
5.	Industrial manufacturing process description, wastewater characterization, source reduction options and waste treatment flow sheet for textilestanneries- pulp and paper- metal finishing- Petrochemical- Pharmaceuticals-Sugar and Distilleries- food processing- fertilizers- Thermal Power Plants and Industrial Estates, ISO 14000:2003- Waste Audit.	5

Course Outcomes:

Ī	At the completion of this course, students will be able to:			
Ī	1.	Have knowledge about treatment methods & design.		
Ī	2. Have knowledge about effluent and sludge management vis-à-vis EMS (ISO14000).			

	ography.		
Sr. No.	Name of the Book/ Author/ Publisher:	Year of Publication/Reprint	
1.	"Industrial Water Pollution Control", Eckenfelder, W.W., McGraw-	2002	
	Hill.		
2.	"Wastewater Treatment for Pollution Control", Arceivala, S.J.,	2000	
	McGraw- Hill.		
3.	"Industrial Waste treatment Handbook," Frank Woodard,	2001	
	Butterworth Heinemann, New Delhi.		

Course Name	:	Indoor Air Quality
Course Code	:	CEM 5402
Credits	:	1.5
LTP	:	3-0-0
Segments	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To better know indoor air quality and its methods to maintain it.
2.	Design of mitigation methods of indoor pollution

Course Contents:

Sr. No.	Course Contents	No. of Lectures
1.	Indoor activities of inhabitants- level of pollutants in indoor and outdoor air- Design and operation of building for improvements of public health – IAQ policy issues- sustainability. Air pollutants in indoor environment- private residences - offices- schools- public building - ventilation.	4
2.	Concepts of several pollutant classes- radon- toxic organic gases- combustion byproducts- microorganisms such as molds and infectious bacteria.	4
3.	Concepts and tools - exposure - material balance models; statistical models.	5
4.	Indoor air pollution from outdoor sources- particulate matter and ozone-combustion	3
5.	Byproducts - Radon and its decay products- volatile organic compounds- odors- and sick building syndrome- Humidity- bio aerosols- infectious disease transmission- special indoor environment - A/C units in indoor- Measurement methods- Control technologies - Control strategies.	5

Course outcomes:

At th	At the completion of this course, students will be able to:			
1.	Understand the air quality parameters			
2. Apply the techniques of control of indoor air pollution				

Bibliography:

Sr. No.	Name of the Book/ Author/ Publisher	Year of Publication/Reprint
1.	"Indoor air and Environmental Quality", ThaddesGodish,	2000
	CRC press.	

MOOCs are available at: https://www.coursera.org/learn/intro-indoor-air-quality

Course Name	:	Life Cycle Analysis
Course Code	:	CEM 5403
Credits	:	1.5
LTP	:	300
Segments	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To understand the analysis techniques used in LCA.
2.	To understand the application methods for product LCA

Course Contents:

Sr.	Course Contents:	
No.		Lectures
1.	Introduction to LCA, Scope and goal definition	2
2.	Inventory analysis, I/O and matrix LCI	5
3.	Impact assessment, Ecological risk and human risk, Eco-system impacts and un-certainty analysis	5
4.	Applications of LCA, Case-studies of product LCA, Case studies of process LCA, Limitations of LCA	5
5.	LCA project study.	4

Course outcomes:

At th	At the completion of this course, students will be able to:				
1.	1. Use the knowledge of LCA product design				
2.	2. Understand and apply LCA for prevention & control of pollution				

Bibliography:

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	"Environmental Life Cycle Analysis", Ciambrone, D.F., CRC	2007
	Press.	
2.	"Handbook on Life Cycle Assessment: Operational Guide to the	2004
	ISO Standards", Guinee, J.B., Kluwer Academic Publishers.	

 $MOOCs \ are \ available \ at: \underline{https://onlinecourses.nptel.ac.in/noc17_ce10/preview}$

Course Name	:	Rural Water Supply and Environmental Sanitation
Course Code	:	CEM 5404
Credits	:	1.5
LTP	:	3-0 0
Segments	:	4-6

Course Objectives:

The main objectives of this course are:		
1.	To learn about analytical the water supply in rural areas.	
2.	To learn about environmental sanitation methods in rural areas.	

Course Contents:

Sr. No.	Course Contents	No. of Lectures
1.	Rural water supply schemes - treatment and remedies.	3
2.	Epidemiology	3
3.	Sanitation of public	3
4.	Pasteurization, Industrial hygiene	4
5.	Occupational hazards, Radiological health	5
6.	Effluent disposal, Low cost treatment systems, Biogas plants, Composting.	6

Course outcomes:

At the	At the completion of this course, students will be able to:		
1.	1. Have knowledge about water supply scheme in rural areas.		
2.	2. Have knowledge about environmental sanitation methods and there design in rural areas.		

Sr.	Name of the Book/ Author/ Publisher:	Year of
No.		Publication/Reprint
1.	"Environmental History of Water: Global Views on Community	2007
	Water Supply and Sanitation", Juuti, P., Tapio S. K., and	
	Vuorinen H., Iwa Publishing (Intl. Water Assoc).	

OPEN ELECTIVES

Course Name	:	Climate Change and Sustainable Development
Course Code	:	CEO 5001
Credits	:	1.5
LTP	:	3-0-0
Segments	:	1-3

Course Objectives:

	The main objectives of this course are:	
1.	To understand the climate system and anthropogenic effects.	
2.	2. To study various models of predicting climate change	
3.	To emphasize upon climate protection for sustainable development.	

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Climate system	2
2.	Human impacts on the climate	4
3.	Modeling-interpretation and prediction of climate, Long term climate monitoring, Concepts of climate change, Potential causes of climate change, Integrated approach and sectoral approach, Climate change regimes	11
4.	Sustainable development, Climate protection pathways of development	4

Course outcomes:

At the	At the completion of this course, students will be able to:		
1.	1. Understand the climate system and anthropogenic effects.		
2.	2. Understand the monitoring and modeling of predicting climate change.		
3.	3. Understand the climate protection strategies for sustainable development.		

Bibliography:

Sr.	Name/ Author/ Publisher	Year of Publication/
No.	Name/ Author/ I ublisher	Reprint
1.	"Climate Change and Sustainable Development: Prospects for	2002
	Developing Countries ", Anil Markandya, Routledge.	
2.	"Interpreting Sustainability, in Sustainability: Dynamics and	2000
	Uncertainty", Heal, G. M., Kluwer Academic Pub.	

MOOCs are available at:

1. https://www.edx.org/course/climate-change-science-ubcx-climate1x-3

Course Name	:	Clean Technology
Course Code	:	CEO 5002
Credits	:	1.5
LTP	:	3-0-0
Segments	:	4-6

Course Objectives:

	The main objectives of this course are:
1.	To understand the processes and technologies to keep environment clean.
2.	To understand use of preventive methods of pollution control

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	INTRODUCTION TO SOCIETY AND ITS PROBLEM Industrial Society, Resource Limitations, Environmental Problems.	2
2.	DEVELOPMENT AND ITS PROCESSES Sustainable Development, Thermodynamics	4
3.	ENERGY SYSTEM Global Energy Situation, Energy System, Net Energy Analysis, Energy Saving, Energy Storage	4
4.	ENGINEERING CHEMISTRY Engineering Separation, Process Development, Photochemistry, Thermo-Chemistry	4
5.	WASTES Waste, Industrial Waste, Hazardous Waste	2
6.	ECO- FRIENDLY TECHNOLOGIES System Analysis, Flexible Processes, Materials & products eco-design, Material Recycling, Biodegradable Materials.	5

Course outcomes:

At the	At the completion of this course, students will be able to:				
1.	Grasp the knowledge of different technologies used to maintain clean environment.				
2.	Understand eco-friendly technologies and there applications				

Bibliography:

S. No.	Name/ Author/ Publisher	Year of Publication/ Reprint
1.	"Clean Technology", Allan Johansson, CRC Press.	2001
2.	"Green Energy Technology", Aswathanarayana U., Harikrishnan	2012
	T., and Kadher-Mohien S. T., Economics and Policy, CRC Press.	

MOOCs are available at:

- 1. https://www.coursera.org/learn/sustainable-development
- 2. https://www.edx.org/course/sustainable-energy-design-a-renewable-future