PG-Curriculum (Structure and Course Contents) M.Tech.- Computer Science & Engineering

With effect from July 2018

Computer Science & Engineering Punjab Engineering College

(Deemed to be University) Chandigarh

Index

S. No.	Course Stream	Page no.
1.	M.Tech. Teaching Scheme	1-3
Semes	ster-I	
2.	Soft Computing	6-9
3.	Design of Experiments and Research	11-12
	Methodology	
4.	Program Core-I &II	14-21
5.	Program Elective	23-58
6.	Engineering mathematics	60-63
	Semester-II	
7.	Soft skills & Management	66-71
8.	Program Core-III&IV	73-76
9	Program Elective	78-112
10.	Open Elective	114-119
	Total pages	121

M.Tech. Teaching Scheme

Semester I

Sr.	Course	Course	Course Name	Credits	Segment
No. 1.	Stream Soft	Code SCM5011	Internet of Things	1.5	Number 1-3
1.	Computing	SCM5011 SCM5012	Machine Learning	1.5	4-6
2.	Design of	DRM5011	Design of Experiments and Research	3	1-6
2.	Experiments	DKWISOTT	Methodology		1-0
	and Research Methodology				
3.	Program Core-	CSM5011	Advanced Data Structures	1.5	1-3
	I	CSM5012	Advanced Algorithms	1.5	4-6
4.	Program Core-	CSM5021	Software Testing	1.5	1-3
	II	CSM5022	Cryptography and Computer Security	1.5	4-6
5.	Program Elective-I: E1	CSM5101	Information Retrieval	1.5	1-3
	Elective-1; E1	CSM5102	Mobile and Wireless Network Security		
		CSM5103	Computer Vision		
		CSM5104	Distributed Algorithms and Computing System		
		CSM5105	Ad-hoc Networks		
		CSM5106	Advanced Computer Networks		
		CSM5107	Distributed Database Management System		
		CSM5108	Agile Software Development		
		CSM5109	Smartphones and Next Generation Computing	-	
		CSM5110	Cloud Computing and Security		
	Program	CSM5201	Recommender Systems	1.5	4-6
	Elective-II: E2	CSM5202	Web Crawlers and Search Engines		
		CSM5203	Image and Video Processing		
		CSM5204	Mobile Computing		
		CSM5205	Wireless Sensor Networks		
		CSM5206	Advanced Data Warehouse and Data Mining		
		CSM5207	Crowd-Sensing and Pervasive Computing		
		CSM5208	Cryptocurrency and Blockchain Technology		
6.	Engineering	EMM5014	EM1: Number Theory & Finite Fields	1	1-2
	Mathematics	EMM5015	EM2: Discrete Mathematics	1	3-4
	(EM)	EMM5012	EM3: Optimization Techniques and Genetic Algorithm	1	5-6
			Total Credits	18	

Semester II

Sr. No.	Course Stream	Course Code	Course Name	Credits	Segment Number
1.	Soft Skills and	SSM5021	Communication Skills	1.5	1-2
1.	Management	SSM5021	Management Entrepreneurship and IPR	1.5	3-4
	Wanagement	SSM5022 SSM5023	Professional Ethics	0.5	5-6
2.	Program Core	CSM5031	Data Science	3	1-6
3.	Program Core- IV	CSM5041	Soft Computing	3	1-6
4.	Program	CSM5301	Social Network Analysis	1.5	1-3
	Elective-III: E3	CSM5302	Image and Video Analytics		
		CSM5303	Convex Optimization		
		CSM5304	Performance Evaluation of Computer		
			Systems and Networks		
		CSM5305	Business Analytics		
		CSM5306	Deep Learning		
	Program	CSM5401	Big Data Analytics	1.5	4-6
	Elective-IV: E4	CSM5402	Medical Image Processing		
		CSM5403	Advanced Programming in Python, R, Weka		
		CSM5404	Bioinformatics		
		CSM5405	Architecture of Distributed		
		021/10 100	CloudApplications		
		CSM5406	Information Warfare		
		CSM5407	Game Theory		
		CSM5408	Approximation Algorithms		
		CSM5409	High Performance Computing		
5.	Open Elective	CSO5001	Data Science	3	1-6
	•	CSO5002	Soft Computing	3	1-6
		CSO5003	Data Structures	1.5	1-3
		CSO5006	Business Analytics		
		CSO5004	Digital Image Processing	1.5	4-6
		CSO5005	Cloud Computing		
6.	Mini project/	CSP5001	1 0	3	
	Pre-dissertation				
			Total Credits	18	

Summer Term *

Sr.	Course	Course Name	Credits
no.	Code		
1		Industrial Visit (3 days to 1 week of visit,	Satisfactory/ Non-
		Submission and presentation of visit report)	satisfactory

^{*}After Examination of second semester, in the first week of summer vacation industry visit can be undertaken.

Semester-III

Course No.	Course Name	Credits
1.	Dissertation/Industry Project	14

Semester-IV

Course No.	Course Name	Credits
1.	Dissertation/Industry Project	18

<u>Total credits – 68</u>

SEMESTER – I

SOFT COMPUTING

Course Name	:	Internet of Things
Course Code	:	SCM5011
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The ma	The main objectives of this course are:			
1.	Understanding of core technology, applications, sensors used and IOT architecture			
	along with the industry perspective.			
2.	Principles and operations of different types of sensors commonly used on mobile			
	platform will be taught in a manner that by the end of the course the students will be			
	able to design and implement real time solutions using IOT.			

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to IOT	2
	What is IoT, how does it work? Difference between Embedded device and	
	IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision	
	Framework, IoT Solution Architecture Models, Major IoT Boards in	
	Market, Privacy issues in IOT	
2.	Setting Up Raspberry Pi/Arduino to Create Solutions	3
	Explore Raspberry Pi, setting up Raspberry Pi, showing working of	
	Raspberry Pi using Secure Shell (SSH) Client and Team Viewer,	
	Understand Sensing actions, Understand Actuators and	
	Microelectromechanical Systems (MEMS).	
3.	Communication Protocols used in IoT	3
	Types of wireless communication, Major wireless Short-range	
	communication devices, properties, comparison of these devices	
	(Bluetooth, Wireless Fidelity(WiFi), ZigBee, Low-power Wireless	
	Personal Area Network(6LoWPAN)), Major wireless Long-range	
	communication devices, properties, comparison of these devices (Cellular	
	IoT, Low-Power Wide-Area Network(LPWAN))	_
4.	IoT Applications	3
	Industrial Internet 4.0, Applications such as: Smart Homes, Wearables,	
	Smart City, Smart Grids, Connected Car, Connected digital health,	
	telehealth, telemedicine), smart retail.	
5.	Sensors	3
	Applications of various sensors: Google Maps, Waze, WhatsApp, Ola	
	Positioning sensors: encoders and accelerometers, Image sensors: cameras	
	Global positioning sensors: Global Positioning System (GPS), Global	
	Navigation Satellite System (GLONASS), Indian Regional Navigation	
	Satellite System (IRNSS), Galileo and indoor localization systems,	

Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity	
Sensor, Gyroscope, Calibration, - noise modelling and characterization,	
and - noise filtering and sensor data processing, Privacy & Security	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project based lab work: Design and build systems that will use sensors,	14
	communication protocols and actuators	

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	1. Understand the concept of IOT		
2.	Study IOT architecture and applications in various fields		
3.	Study the security and privacy issues in IOT.		
4.	Understand various applications of sensor in Industrial, healthcare, commercial, and		
	building automation.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", VPT, 1st Edition	2014
2.	Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", Apress Publications, 1st Edition	2013
3.	CunoPfister, "Getting Started with the Internet of Things", OReilly Media	2011
4.	Kyung, CM., Yasuura, H., Liu, Y., Lin, YL., Smart Sensors and Systems, Springer International Publishing	2015

- 1. https://www.coursera.org/specializations/iot
- $2.\ https://www.edx.org/course/introduction-to-the-internet-of-things-iot$

Course Name	:	Machine Learning
Course Code	:	SCM5012
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

The ma	The main objectives of this course are:		
1.	To formulate machine learning problems corresponding to different applications.		
2.	To understand a range of machine learning algorithms along with their strengths and		
	weaknesses.		
3.	To develop reasoning behind Model selection, model complexity, etc.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	BASICS OF MACHINE LEARNING:	2
	Applications of Machine Learning, processes involved in Machine	
	Learning, Introduction to Machine Learning Techniques: Supervised	
	Learning, Unsupervised Learning and Reinforcement Learning, Real-	
	life examples of Machine Learning.	
2.	Artificial Intelligence and its applications in relevant engineering	2
	branch.	
3.	SUPERVISED LEARNING:	5
	Classification and Regression: K-Nearest Neighbour, Linear	
	Regression, Logistic Regression, Support Vector Machine (SVM),	
	Evaluation Measures: SSE, MME,	
	R2,confusionmatrix,precision,recall,F-Score,ROC-Curve.	
4.	UNSUPERVISED LEARNING:	5
	Introduction to clustering, Types of Clustering: Hierarchical-	
	Agglomerative Clustering and Divisive clustering; Partitional	
	Clustering - K-means clustering, Principal Component Analysis, ICA.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Python Introduction: Loops and Conditions and other preliminary stuff,	8
	Functions, Classes and Modules, Exceptions, Database access,	
	Mathematical computing with Python packages like: numpy, Mat-	
	plotLib, pandas Tensor Flow, Keras	
2.	Application Oriented Project Work	6

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Design and implement machine learning solutions to classification, regression and		
	clustering problems		
2.	Evaluate and interpret the results of the different ML techniques		
3.	Design and implement various machine learning algorithms in a range of Real-		
	world applications.		
4.	Use Python for various applications.		

Bibliography:

Sr.	Book Detail	Year of
No.		Publishing
1.	Tom Mitchell, Machine Learning, McGraw Hill	2017
2.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer	2011
3.	T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e	2008
4.	Yuxi (Hayden) Liu, "Python Machine Learning By Example", Packet Publishing Limited	2017

MOOCs on this course are available at:

- Data Science: Machine Learning -https://www.edx.org/course/data-science-machine-learning
 Machine Learning https://www.coursera.org/learn/machine-learning

DESIGN OF EXPERIMENTS & RESEARCH METHODOLOGY

Course Name	:	Design of Experiments and Research Methodologies
Course Code	:	DRM5011
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28 Total No. of Lab hrs. 28

Course Objectives:

The	main objectives of this course are:
1.	To develop an understanding of how to identify research topics, formulate research questions / hypotheses, select an appropriate research and, where applicable, experimental design.
2.	Provides a basis so the student can effectively develop a research proposal for either a capstone project, master's thesis, research project, or designed experiment.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction : Types of Research and Their Purposes, Locating,	6
	Analysing, stating and evaluating research problem, need for literature	
	review, steps in conducting literature review, Strengths, Weaknesses,	
	Opportunities, and Threats (SWOT) analysis, research questions and	
	hypothesis, types of hypothesis, evaluation of hypothesis.	
2.	Research Design and Sampling Design: Concept of research design,	4
	features of a good research design, concept of population and sample,	
	characteristics of sample design, types of sampling techniques	
3.	Methods of data collection and measurement: Primary data and	6
	Secondary data, data collection techniques: observation, interview,	
	questionnaires, schedules, case-study, levels of measurement, problems in	
	measurement in research – validity, reliability.	
4.	Statistical Methods of Analysis: Descriptive statistics: mean, median,	8
	mode, range, mean deviation and standard deviation, regression and	
	correlation analysis, inferential statistics: t-tests, Chi-square tests.	
	Correlation (rank difference and product moment), Analysis of variance	
	(ANOVA) (one way)	
5.	Procedure for writing a research report and manuscript: Types of	4
	research reports, steps of writing a report, layout of report, layout of	
	research paper, ethical issues related to publishing, Plagiarism and Self-	
	Plagiarism.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Select a problem from your area of interest, identifying the type of research	4

	problem it is and perform the SWOT analysis of the existing literature.	
2.	Generate research questions and hypotheses for a problem from your area	4
	of interest.	
3.	Identify the population and sample for the study (highlighting the	4
	technique used for sample selection) for a problem from your area of	
	interest.	
4.	Design a questionnaire for the problem of interest.	4
5.	Utilizing software such as Statistical Package for the Social	6
	Sciences(SPSS), Mini Tab, etc. for the statistical analysis of the results	
	obtained for the desired questionnaire.	
6.	Preparing a research paper for the problem of interest	6

Course Outcomes:

At the	At the end of the course, students will be able to:		
1. Developed an understanding of how to identify research topics, formulate research			
	questions and corresponding hypotheses, select an appropriate research and where		
	applicable, experimental design.		
2.	Perform required statistical analyses for any univariate application in a business /		
	industrial setting, regardless of data form, and will be familiar with major indices for		
	measuring correlation and association.		
3.	Further, the underlying assumptions related to each statistical test and its		
interpretation will be thoroughly reviewed.			

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Probability and Statistics for Engineers and scientists by Anthony J. Hayter, Cencage Learning, 4th Edition	2016
2.	Probability and Statistics for Engineers and scientists by Walpole, Myers, Myers and Ye, 8th ed Pearson Education	2007
3.	Research Methodology - Methods and Techniques, C. K. Kothari, New Age International, 2nd Edition	2004
4.	English for writing research papers by Adrian Wallwork, 2nd Edition. Springer	2016
5.	Statistics: Concepts and Controversies by David S. Moore, William I. Notz, W. H. Freeman	2016

- 1. https://www.coursera.org/learn/research-methods
- 2. https://www.lawctopus.com/certificate-course-on-research-methodology-online/

PROGRAM CORE

Course Name	:	Advanced Data Structures
Course Code	:	CSM5011
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. Lectures:14 Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:		
1.	To choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.		
2.	To understand the necessary mathematical abstraction to solve problems.		
3.	To familiarize students with advanced paradigms and data structure used to solve algorithmic problems.		
4.	To come up with analysis of efficiency and proofs of correctness.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Dictionaries and hashing: Definition, Dictionary Abstract Data Type,	3
	Implementation of Dictionaries, Double Hashing, Rehashing, Extendible	
	Hashing.	
2.	Skip Lists: Need for Randomizing Data Structures and Algorithms,	3
	Search and Update Operations on Skip Lists, Probabilistic Analysis of	
	Skip Lists, Deterministic Skip Lists	
3.	Text Processing: Sting Operations, Brute-Force Pattern Matching, The	5
	Boyer-Moore Algorithm, Compressed Trees, The Huffman Coding	
	Algorithm, The Longest Common Subsequence Problem (LCS), Applying	
	Dynamic Programming to the LCS Problem.	
4.	Trees: Red Black Trees, 2-3 Trees, B-Trees, Splay Trees	3

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project related to applications of hashing techniques	4
2.	Small text Processing application to compare different string processing	4
	algorithms	
3.	Build application using tree data structures	6

Course Outcomes:

1	At the end of the course, students will be able to:		
	1. Understand the implementation of symbol table using hashing techniques		
	2.	Develop and analyze algorithms for red-black trees, B-trees and Splay trees	
3. Develop algorithms for text processing applications		Develop algorithms for text processing applications	

4. Identify suitable data structures and develop algorithms for computational geometry

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 4th Edition, Pearson	2014
2.	M T Goodrich, Roberto Tamassia, Algorithm Design and Applications, John Wiley	2014
3.	Bradley N. Miller, David L. Ranum, Problem Solving with Algorithms and Data Structures Using Python, Franklin, Beedle & Associates	2011

- 1. http://nptel.ac.in/courses/106106133/
- $2.\ https://www.edx.org/course/data-structures-fundamentals-uc-san-diegox-algs 201x$

Course Name	:	Advanced Algorithms
Course Code	:	CSM5012
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures:14 Total No. of Lab hrs. 14

Course Objectives:

The	The main objectives of this course are:		
1.	To understand different classes of problems.		
2.	To analyze and compare multiple algorithms for same problem.		
3.	To introduce students with recent development in area of algorithmic design.		

Course Contents:

Sr. No.	Course contents	No. of
		Lectures
1.	Graph Algorithms	5
	Topological sorting, Bellman-Ford shortest path, Floyd Warshall shortest	
	path, Euler Path and Circuit	
2.	String Algorithms	5
	Pattern Matching: Knutt-Morris-Pratt, Rabin-Karp, Suffix Trees and Suffix	
	Arrays	
3.	Approximation Algorithms	4
	Introduction to Randomized Algorithms, Approximation Algorithms, Parallel	
	Algorithms	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Practical comparison of regular and Fibonacci heaps	3
2.	String matching with errors	2
3.	Lossless data compression with suffix trees	4
4.	Discovering shortest routes between Indian railroad stations	5

Course Outcomes:

At the e	At the end of the course, students will have:		
1.	1. Compare and design efficient solution for a given problem		
2.	2. Understand selection of data structure for an algorithm		
3.	3. Understand latest paradigms in algorithm design		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Cormen, Leiserson, Rivest, Stein, "Introduction to Algorithms", Prentice Hall of India.	2009
2.	Horowitz, Sahini, "Fundamentals of algorithms", University Press.	1996
3.	Brassard, Bratley, "Fundamentals of algorithms", Prentice Hall of India.	1996
4.	Knuth, "The Art of Computer Programming", Vol. I-III, Pearson Education.	2008
5.	Kleinberg and Tardos, "Algorithm Design", Pearson Addison-Wesley	2011

- 1. https://www.coursera.org/learn/advanced-algorithms-and-complexity
- $\textbf{2}. \ https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-854j-advanced-algorithms-fall-2005/$

Course Name	:	Software Testing
Course Code	:	CSM5021
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:					
1.	To learn the concept and importance of software testing and to				
2.	To enable students to construct software that is reasonably easy to understand, modify,				
	maintain and reliable.				

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Software Testing Approaches and their Applicability: Testing	5
	techniques and their applicability-functional testing and analysis,	
	structural testing and analysis, hybrid approaches, integration strategies,	
	data flow analysis, stress analysis, failure analysis, performance analysis,	
	Testing Hierarchies.	
2.	Test Generation: Finite State Machines models for flow analysis,	5
	Regular expressions based testing, Test Selection, Minimizations and	
	Prioritization, Regression Testing.	
3.	Object Oriented Testing: Object Oriented Testing Issues, Object	4
	Oriented (OO) Testing Methodologies, Analysis and Design Testing-	
	Unified Markup Language (UML)Based, Class Testing, State based	
	Testing, Testing Web applications.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project to Understand the Automation Test Cases generation.	3
2.	Using any Integrated Development Environment (IDE)	3
	(like Selenium), Write a test suite containing minimum 4 to 5 test cases.	
3.	Project for the performance analysis and regression testing of any program.	4
4.	A project to illustrate the use of Object oriented testing.	4

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	To develop testable software.		
2.	To understand and deploy testing psychology		
3.	generate test cases effectively from Requirements, Design Models, Code etc.		
4.	To generate test cases automatically.		

5. To apply various test cases to industrial applications.

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Boris Beizer, Software Testing Techniques, John Wiley & Dreamtech	2008
	2nd Edition, 2008.	
2.	Yogesh Singh, Software Testing, Cambridge Press, November 2012.	2012
3.	Aditya P. Mathur, Foundations of Software Testing, Pearson Education	2007
	India, 2007	
4.	Glenford J. Myers, The Art of Software Testing, Wiley India Pvt. Ltd,	2011
	3 rd edition, Nov 2011	
5.	John D. McGregor & David A, A practical guide to testing object-	2001
5.	oriented software, Addison- Wesley object technology series, 2001.	
6.	William E. Perry, Effective Methods for Software Testing, John Wiley	2011
	& Sons, 3 rd edition, 2011.	

- 1. http://nptel.ac.in/courses/106101163/
- $2.\ https://www.edx.org/course/software-testing-management-usmx-umuc-stv1-2x-1$

Course Name	:	Cryptography and Computer Security
Course Code	:	CSM5022
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Course Objectives:

The n	The main objectives of this course are:		
1.	To understand basic design principals of symmetric and asymmetric cryptography and		
	learn how standard cryptanalytic attacks work and thereby how to avoid common design		
	flaws.		
2.	To understand hash functions and existing techniques like Advanced Encryption		
	Standard(AES), Rivest–Shamir–Adleman (RSA) and Discrete Log.		
3.	To gain knowledge of the technologies that underpin the deployment and maintenance		
	of a secure network.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction - Security mindset, Computer Security Concepts (CIA),	2
	Threats, Attacks and Assets.	
2.	Cryptographic Protocols - Introduction to Protocols, Communications	3
	using Symmetric Cryptography, Substitution Ciphers and Transposition	
	Cipher, Block Cipher, Steam Cipher, Modes of Operation, Symmetric and	
	Asymmetric cryptography	
3.	Cryptographic Techniques - Key Length & Management: Symmetric	3
	Key Length, Public-Key Key Length, Comparing Symmetric and Public-	
	Key Key Length, Generating Keys, Algorithms: DIFFIE-HELLMAN,	
	RSA, DES.	
4.	Practical Cryptography - Encryption, authentication, hashing,	2
	Symmetric and Asymmetric cryptography, Digital Signatures and	
	Certificates.	
5.	Network Security and Protocol Standards – Network security issues,	4
	sniffing, IP Spoofing, Common threats, E-mail security, Secure Socket	
	Layer (SSL), Transport Layer Security (TLS), SSH, IPSEC, Pretty Good	
	Privacy (PGP), Intruders, Virus, Worms, Firewalls-need and features of	
	firewall, Types of firewall, Intruder Detection Systems.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Practical Use of Network Security Tools, Email Header Analysis, Packet	14
	sniffing, configuration of network security equipment such as firewall,	
	routers, IDS, Wireless Access Points	

Course Outcomes:

At the 6	end of the course, students will be able to:
1.	Apply the basic rules of public key and symmetric encryption for practical
	cryptographic problems
2.	Demonstrate the design and use of hash functions, digital signatures, and key
	distribution with a wide range of key types.
3.	Understand the current popular techniques of AES and RSA, digital signatures and
	key establishment protocols
4.	Given a problem in cryptography, be able to design an algorithm to implement the
	solution to that problem.
5.	To design/develop/ implement the security solution for a given application.

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Introduction to Modern Cryptography by Jonathan Katz and Yehuda Lindell, CRC Press	2014
2.	Cryptography and Network Security by William Stallings, Fourth Edition, 2006 Prentice Hall. ISBN 0-13-187316-4	2006
3.	Handbook of Applied Cryptography by Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, CRC Press.	2000
4.	Applied Cryptography: Protocols, Algorithms and Source Code in C by Bruce Schneier, John Wiley and Sons	2017

- 1. https://www.coursera.org/learn/crypto
- 2. https://online.stanford.edu/courses/xacs130-using-cryptography-correctly

PROGRAM ELECTIVE

Course Name	:	Information Retrieval
Course Code	:	CSM5101
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To learn the basic concepts in Information Retrieval and more advance techniques of multimodal based information systems.

Course Contents:

Sr. No.	Course contents	No. of Lectures
	0 ' 04 0' 1	
1.	Overview of the fields	3
	Study some basic concepts of information retrieval and data mining, such	
	as the concept of relevance, association rules, and knowledge discovery.	
2.	Indexing	4
	Introduce various indexing techniques for textual information items, such	
	as inverted indices, tokenization, stemming and stop words.	
3.	Retrieval Methods	4
	Study popular retrieval models: Tokenization, vocabulary, dictionary,	
	Indexing for zoned search, fields, word prefix match.	
4.	Emerging Areas in IR: Peer-to-peer information retrieval and	3
	MapReduce, Learning to Rank;	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Project to demonstrate the association rules that can be derived using data	3
	mining.	
2.	Project to demonstrate various indexing methods that involves stemming	3
	and stop words elimination etc.	
3.	Project to study retrieval methods that can be used for getting data from a	4
	website.	
4.	Project to demonstrate various ranking algorithms.	4

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Understanding the basics of Information retrieval		
2.	Understanding the data structures like Inverted Indices used in Information retrieval		
	systems		
3.	Understanding the different techniques for compression of an index including the		

	dictionary and its posting list
4.	Understanding the different components of an Information retrieval system
5.	Developing the ability of develop a complete IR system from scratch

Bibliography:

Sr. No.	Book Detail	Year of Publication
	Introduction to Information Retrieval, Christopher D. Manning,	2008
1.	Prabhakar Raghavan and HinrichSchütze, Cambridge University Press.	
	2008.	
	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach and	2006
2.	Vipin Kumar, Addison-Wesley, 2006 Gigabytes (2nd Ed.) Ian H.	
۷.	Witten, Alistair Moffat and Timothy C. Bell. (1999), Morgan	
	Kaufmann, San Francisco, California.	
3.	Information Retrieval: Data Structures and Algorithms by Frakes,	1992
3.	Pearson, 1 st edition 1992	
	An Introduction to Natural Language Processing, Computational	2009
4.	Linguistics, and Speech Recognition Second Edition by Daniel	
	Jurafsky and James H. Martin, 2 nd edition 2009.	
	Search Engines: Information Retrieval in Practice 1st Edition by Bruce	2015
5.	Croft (Author), Donald Metzler (Author), Trevor Strohman (Author),	
	2015.	
	Introduction to Information Retrieval, Christopher D. Manning,	2008
6.	Prabhakar Raghavan and HinrichSchütze, Cambridge University Press.	
	2008.	

- 1. http://web.stanford.edu/class/cs276/
- **2.** https://www.coursera.org/courses?languages=en&query=information+retrieval

Course Name	:	Mobile and Wireless Network Security
Course Code	:	CSM5102
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To analyze cutting-edge research and security solutions in wireless and mobile networks including security in next generation mobile networks.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Security in the digital age, Threats and risks to telecommunications systems, Vulnerabilities from wireline vulnerabilities to vulnerabilities in wireless communications	2
2.	Fundamental Security Mechanisms, Secure communication protocols and VPN implementation, Multimedia Content watermarking using Robust watermarking and challenge for the information society	4
3.	Wi-Fi security Dedicated architectures - Hot spot architecture, Wireless intrusion detection system(WIDS), Wireless honeypots, Wi-Fi Security - Attacks on wireless networks, security in the IEEE 802.11 standard, Authentication in wireless networks	4
4.	Security in Mobile Telecommunication Networks - security in the GSM, GPRS security, 3G security, Bluetooth Security, 4G security	4

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Attacks and Security Mechanisms in Wi-Fi and Mobile Networks.	2
2.	Implementing secure information exchange using watermarking of multimedia content.	3
3.	Implementation of Mobile location and navigation security and privacy.	3
4.	Development of novel secure platforms/services using mobile technologies (e.g., secure device-to-device communication in hybrid mobile systems).	3
5.	Implement technique for intrusion detection in wireless networks.	3

Course Outcomes:

At the	end of the course, students will be able to:
1.	Architect a secure wireless network infrastructure for their organization, including
	strong encryption and centralized authentication.
2.	Gain insight to the hackers threats and the major techniques used against hacking
	wireless networks.
3.	Master hacking and vulnerability assessment tools to assess the security of wireless
	networks, including cracking WEP and WPA security.

4. Identify (and fix) vulnerabilities and mis-configurations in wireless network technologies

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Wireless and Mobile Network Security, HakimaChaouchi and Maryline Laurent-Maknavicius, Wiley-ISTE.	2009
2.	Mobile and Wireless Network Security and Privacy, Springer	2007
3.	Wireless And Mobile Network Security, PallapaVenkataram and Satish Babu B., McGraw-Hill Education Ltd.	2012
4.	Mobile and Wireless Network Security and Privacy, S. Kami Makki, Peter Reiher, Kia Makki, Niki Pissinou, ShamilaMakki, Springer.	2007
5.	Security and Privacy in Mobile and Wireless Networking, Stefanos Gritzalis, Tom Karygiannis, CharalabosSkianis, Troubador Pub.	2009

- 1. https://www.coursera.org/learn/wireless-communication-technologies
- 2. https://www.teracomtraining.com/online-courses-certification/teracom-overview-12106.htm

Course Name	:	Computer Vision
Course Code	:	CSM5103
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The	The main objectives of this course are:				
1.	To understand techniques, mathematical concepts and algorithms used in computer vision to facilitate further study in this area.				
2.	To implement different concepts and techniques covered.				

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview	1
	Image acquisition, sampling and quantization, neighbors of pixels and	
	connectivity, basic transformation	
2.	Image Formation Models	3
	Monocular imaging system, Orthographic and Perspective Projection,	
	Camera model and camera calibration, Binocular imaging systems	
3.	Image Processing and Feature Extraction	2
	Image representations (continuous and discrete), Edge detection.	
4.	Motion Estimation	3
	Regularization theory, Optical computation, Stereo vision, Motion	
	Estimation, Structure from motion.	
5.	Shape Representation And Segmentation	2
	Deformable curves and surfaces, snakes and active contours, level set	
	representations, Fourier and wavelet descriptors	
6.	Object Recognition	3
	Hough transforms and other simple object recognition methods, Shape	
	correspondence and shape matching, Principal component analysis	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Implement edge detection techniques	2
2.	Implement motion estimation and detection techniques	4
3.	Analysis of curves and surfaces	4
4.	Implement object recognition techniques	4

Course Outcomes:

1.	Understand the various edge detectors and Implement several image filtering	
	algorithms.	
2.	Understand the different ways that the shape of an object can be represented.	
3.	Analyse image segmentation, representation, description, and recognition techniques	

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	D. Forsyth, J. Ponce, "Computer Vision-A modern approach", Prentice Hall of India, 2 nd Edition	2015
2.	R. Gonzalez and R.E. Woods, "Digital Image Processing", Pearson Education, 3 rd edition	2008
3.	E. Trucco and A. Verri, "Introductory techniques for 3D computer vision", Prentice Hall	1998

- $\textbf{1.}\ https://www.edx.org/course/computer-vision-and-image-analysis-0$
- 2. https://www.edx.org/course/architecting-distributed-cloud-applications-0

Course Name	:	Distributed Algorithms and Computing Systems
Course Code	:	CSM5104
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Course Objectives:

The	The main objectives of this course are:		
1.	To formally model and present fundamental algorithms for concurrent distributed systems		
2.	To understand message-passing and shared-memory models for various coordination issues like Clock Synchronization, Mutual exclusion, Leader election, Agreement and Consensus.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Distributed Computing Systems and Concurrency : Relation to Parallel	2
	Multiprocessors/multicomputer Systems, Distributed and Concurrent	
	Programs, Formal Models, Message Passing vs. Shared Memory Systems,	
	Synchronous vs. Asynchronous Executions, Design Issues and	
	Challenges, Distributed Computing Technologies.	
2.	Clocks and Synchronization:	3
	Model Timing Assumptions, Scaler Time, Vector Time, Matrix Time,	
	Virtual Time, Clock Synchronization: Temporal ordering of events	
	Lamport's Logical Clock Framework, Physical Clock Synchronization,	
	Vector Clock Implementation.	
3.	Coordination and Agreement:	6
	Distributed Mutual Exclusion Algorithms (Token, Non-Token, Quorum-	
	based): Lamport, Ricart-Agrawala, Singhal's Dynamic, Suzuki-Kasmi's	
	Broadcast	
	Leader Election Algorithms: Bully, Modified Bully, Chang-Robert's	
	Ring,	
	Consensus: Paxos and Multi-Paxos, Byzantine Agreement, Natural	
	Language Processing (NLP) (Impossibility) Theorem.	
4.	Global State and Distributed Transactions:	3
	System Model, Snapshot Algorithms for FIFO and Non-FIFO channels,	
	Chandy-Lamport Variations	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Implementation of Deadlock through Simulation.	2
2.	S/W Simulation for Clock Synchronization in Distributed System using	4
	Lamport's Algorithm.	

3.	Implementation of Banker's Algorithm for avoiding Deadlock.	4
4.	WAP to Implement an Election algorithm.	2

Course Outcomes:

	At the end of the course, students will be able to:				
1.	Relate concurrent and distributed systems for various real-world applications on				
	coordination issues like Mutual Exclusion, Leader Election, and Synchronization etc.				
2.	Design new concurrent algorithms based on computing technologies and verify their				
	correctness.				

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Mukesh Singhal and Ajay D. Kshemkalyani: Distributed Computing- Principles, Algorithms and Systems	2008
2.	G. Coulouris, Dollimore and Kindberg: Distributed Systems- Concepts and Design,fifth Edition	2011

- 1. https://www.edx.org/course/reliable-distributed-algorithms-part-1-kthx-id2203-1x-0
- 2. https://www.coursera.org/courses?languages=en&query=distributed+systems

Course Name	:	Ad-hoc Networks
Course Code	:	CSM5105
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Course Objectives:

The main objectives of this course are:

1. To acquire the knowledge of mobile ad hoc networks, design and implementation issues and available solutions.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction, design challenges, self-organization behaviour of ad hoc	2
	networks, Cooperation in Mobile Ad-hoc Networks (MANETs)	
2.	MAC protocols in MANETs, Routing in MANETs and Vehicular Ad-hoc	3
	Networks (VANETs)	
3.	Multicasting in ad hoc networks, Mobility models, Transport layer	6
	protocols, Opportunistic Mobile Networks, Unmanned Aerial Vehicle	
	(UAV) Networks, Quality of Service (QoS) Issues	
4.	Applications: Applications of Ad-Hoc Networks and Future Directions,	3
	Ultra-wide band radio communication, Wireless fidelity systems	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Use network Simulator (NS2/NS3/NetSim etc.) for Projects:	8
	Projects related to MAC layer Protocols, routing protocols and transport	
	layer protocols in MANET and VANET.	
2.	Projects related to handling of QoS issues in ad-hoc Networks.	4
3.	Project to explore current research trends in ad-hoc networks.	2

Course Outcomes:

At the e	At the end of the course, students will be able to:				
1.	Describe the unique issues and current technology trends for the implementation and				
	deployment of wireless ad-hoc networks.				
2.	Apply MAC and routing protocols to implement wireless ad-hoc networks.				
3.	Analyze transport layer protocols and related QoS issues in ad-hoc networks.				
4.	Design and analyze research issues related to ad-hoc networks.				

Bibliography:

Sr.	Book Detail	Year of
No.		Publication

1.	C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", Prentice Hall, Pearson Education.	2012
2.	Subir Kumar Sarkar, T.G. Basavaraju, C. Puttamadappa, "Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications", CRC Press, Second Edition.	2016
3.	G Ram Mohana Reddy, Kiran M, "Mobile Ad Hoc Networks: Bio- Inspired Quality of Service Aware Routing Protocols", CRC Press.	2016
4.	Salim Bitam, Abdelhamid Mellouk, "Bio-Inspired Routing Protocols for Vehicular Ad Hoc Networks", Wiley.	2014

Available MOOCS:

1. https://ict.iitk.ac.in/courses/wireless-ad-hoc-and-sensor-networks/

Course Name	:	Advanced Computer Networks
Course Code	:	CSM5106
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:			
1.	To develop an understanding of the underlying structure of networks and how they			
	operate and to provide a deeper insight into the internetworking and routing issues.			
2.	To learn and understand resource management issues in networks like congestion			
	control, Quality of Service.			
3.	To understand the working principles and design issues of transport layer protocols.			

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Internetworking and Routing	
	Internetworking problem – packet switching; Delivery and Forwarding of	5
	IP packets; Router Design and Implementation, scaling IP address space,	
	Unicast routing protocols, Mobile IP, IPv6 protocol.	
2.	Resource Management	5
	Data traffic – traffic descriptor, traffic profiles; Congestion – definition,	
	network performance; Congestion control techniques.	
	QoS: Flow characteristics; Flow classes, Techniques to improve QoS,	
	Internet QoS models.	
3.	Group Communication and Transport Layer Protocol	4
	IP Multicast addresses; Internet Group Management Protocol (IGMP)	
	, Multicast Routing and Transport, Multicast routing protocols	
	TCP protocol dynamics; new options in TCP; brief introduction to Stream	
	Control Transmission Protocol (SCTP)	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Use network Simulator (NS2/NS3/NetSim/Omnet etc.) for Projects: Projects related to routing protocols and transport layer protocols in various networks.	8
2.	Projects to include QoS attributes in various types o networks	4
3.	Project to explore current research trends in computer networks.	2

Course Outcomes:

ı	At the end	of the co	urse, student	ts will	be ab	le to:
---	------------	-----------	---------------	---------	-------	--------

1.	Identify and understand the various design issues of internetworking and routing
	protocols
2.	Learn the performance behaviour of networks and understand the congestion control
	and quality of service models in networks
3.	Grasp the concepts and characteristics of various multicast routing protocol
	architectures
4.	Understand the working principles and design issues of transport layer protocols.

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5 th edition, Pearson.	2013
2.	William Stallings, Data and Computer Communications, Prentice Hall	2007
3.	Forouzan, Local Area Networks, Tata McGraw-Hill Education	2002
4.	Behrouz A. Forouzan, Data Communications and Networking McGraw-Hill	2013
5.	Abdul Sakib Mondal, Mobile IP: Present State and Future, Springer Science & Business Media	2012
6.	RFCs and Internet Drafts, available from Internet Engineering Task Force.	
7.	Articles in various journals and conference proceedings	

Available MOOCS:

1. http://nptel.ac.in/courses/106106091/

Course Name	:	Distributed Database Management System
Course Code	:	CSM5107
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:		
1.	1. To understand Distributed DBMS and associated problems.		
2.	To understand various algorithms and techniques for managing distributed database.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview:	4
	Features of distributed vs Centralized databases, Principles of distributed	
	databases, Levels of distribution transparency, Reference architecture for	
	distributed database, Types of data fragmentation, Integrity constraints in	
	distributed databases.	
2.	Query Processing:	5
	Translation of Global query to fragment queries, Equivalence	
	Transformation for queries, transforming global Queries to Fragment	
	Queries, Distributed grouping and aggregation function evaluation,	
	Parametric queries, Optimization of access strategies, A framework for	
	query optimization, Join queries, general queries.	
3.	Concurrency Control:	5
	A framework for transaction Management, Concurrency control for	
	distributed transactions, Optimistic methods for concurrency control,	
	Check points and cold Restart, Catalog Management in distributed	
	databases.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project related to any Distributed database management application.	4
2.	Configuring, installing and handling Hadoop cluster.	5
3.	Project related to analysing Big Datasets and extracting insights.	5

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	List and explain the fundamental concepts of a distributed database system.		
2.	Utilize a wide range of features available in a Distributed Database Management		

	System (DDBMS) package.
3.	Develop the logical design of the database using data modelling concepts such as
	entity-relationship diagrams.
4.	Apply various fragmentation techniques given a problem
5.	Apply optimization techniques to Distributed Database

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Principles of Distributed Database Systems, M. Tamer Ozsu, Patrick Valduriez. Pearson Education. Third Edition	2011
2.	Distributed Databases Principles and Systems; Stefano Ceri; GuiseppePelagatti; Tata McGraw Hill;	1985
3.	Hadoop: The Definitive Guide fourth Edition; Tom White; O'reilly	2012

- $1.\ https://www.coursera.org/learn/distributed-database$
- 2. http://www.inf.unibz.it/dis/teaching/DDB/

Course Name	:	Agile Software Development
Course Code	:	CSM5108
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:	
1.	1. To apply the principles and practices of Agile Software Development on a project of interest and relevance.	
2.	To learn the fundamental principles and practices associated with each of the agile development methods.	

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Agile Software Development: Basics and Fundamentals of Agile Process	5
	Methods, Values of Agile, Principles of Agile, Stakeholders, Challenges.	
2.	Agile and Scrum Principles: Agile Manifesto, twelve practices of XP,	3
	Scrum Practices, Applying Scrum. Need of scrum, working of scrum,	
	advanced Scrum Applications, Scrum and the Organization, scrum values.	
3.	Agile Requirements: User Stories, Backlog Management. Agile	3
	Architecture: Feature-Driven Development. Agile Risk Management:	
	Risk and Quality Assurance, Agile Tools.	
4.	Agile Testing: Agile Testing Techniques, Test-Driven Development, User	3
	Acceptance Test.	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1	Understand the background and driving forces for taking an Agile	4
	Approach to Software Development.	
2	Understand the business value of adopting agile approach.	3
3	Understand agile development practices	3
4	Drive Development with Unit Test using Test Driven Development.	3

Course Outcomes:

	At the end of the course, students will be able to:		
1.	Able to compare Agile and Plan Driven development from an environment,		
	management, people, and customer perspective.		
2.	Differentiate between the different agile processes.		
3.	Able to execute Agile testing.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Agile Software Development, Principles, Patterns, and Practices (Alan Apt Series) Robert C. Martin (Author).	2011
2.	Succeeding with Agile: Software Development Using Scrum, Pearson	2010
3.	Wireless And Mobile Network Security, PallapaVenkataram and Satish Babu B., McGraw-Hill Education Ltd.	2012
4.	Mobile and Wireless Network Security and Privacy, S. Kami Makki, Peter Reiher, Kia Makki, Niki Pissinou, ShamilaMakki, Springer.	2007
5.	Security and Privacy in Mobile and Wireless Networking, Stefanos Gritzalis, Tom Karygiannis, CharalabosSkianis, Troubador Pub.	2009

- 1. https://www.coursera.org/specializations/agile-development
- 2. https://www.edx.org/course/agile-software-development

Course Name	:	Smartphones and Next Generation Computing
Course Code	:	CSM5109
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. Lectures: 14 Total No. Lab Hours: 14

Course Objectives:

The r	The main objectives of this course are:		
1.	To introduce the characteristics, basic concepts and systems issues in mobile and pervasive computing.		
_			
2.	To evaluate critical design trade-offs associated with different mobile technologies,		
	architectures, and interfaces and business models.		
3.	Impact of design on the usability, security, privacy and commercial viability of mobile		
	and pervasive computing services and applications.		

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to Smartphones Smart Phone and mobile computing, convergence of sensing, tablet, Personal Digital Assistant (PDA), or other digital mobile devices, Mobile Apps (eg: Google Navigation App, WhatsApp Messenger, Hike, Snapdeal, MegaApps, CUTransit), Introduction to smartphone system architecture.	4
2.	Programming Platforms Overview of different mobile programming environments, Difference with the classical programming practices, Introduction to mobile operating systems, OS, An-droid, Windows, Mobile application development.	3
3.	Data Collection, Localization & Crowd Sensing Use of Location, User location and tracking system, Cell tower localization, Spot localization, Logical location, Indoor localization, Crowdsourcing for localization, Different Sources of Location Data: Cellular Systems, Multi Reference Point Systems, GPS, Use of Barometer, Data Collection using Crowdsourcing, Harnessing the Wisdom of Crowds, Crowdsourcing, Crowdfunding, Contests and Communities	4
4.	Context Aware Sensing Categorizing uses of contexts, Separations and Generality, Event driven and State Driven Behaviors	3

Lab Work:

Sr. No.	Lab contents	No. of Hours
1	Compares existing and anticipated wireless technologies, focusing on 3G cellular networks and wireless LANs	4
2	Evaluates terminal-side operating systems/programming environments, including Microsoft Windows Mobile, Palm OS, Symbian, J2ME, and Linux	3
3	Considers the limitations of existing terminal designs and several pressing application design issues	3
4	Explores challenges and possible solutions relating to the next phase of smart phone development, as it relates to services, devices, and networks	3

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Have knowledge of sensors in smartphone.		
2.	Vulnerabilities of a smartphone with respect to security and privacy.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Sensing and Systems in Pervasive Computing: Engineering Context Aware Systems, By Dan Chalmers (2011), Springer Science &	2011
	Business Media	
2.	Principles of Mobile Computing, Hansmann, Lothar Merk, Martin	2013
2.	Niclous, Stober	
3.	Mobile Computing, Tomasz Imielinski, Springer	2014

- 1. https://www.edx.org/course/computing-technology-inside-smartphone-cornellx-engri1210x-0
- 2. https://www.coursera.org/learn/smartphone-emerging-technologies

Course Name	:	Cloud Computing and Security
Course Code	:	CSM5110
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:		
1.	To analyze the components of cloud computing showing how business agility in an		
	organization can be created.		
2.	To compare modern security concepts as they are applied to cloud computing and assess		
	the security of virtual systems and Evaluate the security issues related to multi-tenancy.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Cloud Computing Fundamentals	4
	Cloud Computing definition, private, public and hybrid cloud. Cloud	
	types; Product as a Service (PaaS), Infrastructure as a Service (IaaS) and	
	Software as a Service (SaaS). Benefits and challenges of cloud computing,	
	public vs private clouds, role of virtualization in enabling the cloud;	
	Business Agility: Benefits and challenges to Cloud architecture.	
2.	Information Storage Security & Design	4
	Storage strategy and governance; security and regulations. Designing	
	secure solutions; the considerations and implementations involved.	
	Securing storage in virtualized and cloud environments. Monitoring and	
	management; security auditing and Security Information and Event	
	Management (SIEM).	
3.	Security Concepts in Cloud	3
	Confidentiality, privacy, integrity, authentication, non-repudiation,	
	availability, access control, defence in depth, least privilege, how these	
	concepts apply in the cloud, what these concepts mean and their	
	importance in PaaS, IaaS and SaaS.	
4.	Virtualization System-Specific Attacks	3
	Guest hopping, attacks on the VM (delete the Virtual Machine (VM)	
	, attack on the control of the VM, code or file injection into the virtualized	
	file structure), VM migration attack, hyper-jacking.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Installation and configuration of Hadoop/Eucalyptus etc.	2
2.	Deployment of service and its usage over cloud.	2
3.	Implementation of techniques to manage cloud resources efficiently.	3

4.	Implementation of Para-Virtualization using VM Ware's Workstation/	3
	Oracle's Virtual Box and Guest O.S	
5.	Implementing techniques to secure Servers in Cloud	4

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Identify which cloud model will best serve that current process requirements		
2.	Compare between the various cloud providers based on the services and security		
	provided to the customer.		
3.	Able to propose security requirements needed for the processes that need to be run on		
	a cloud and effectively select one of the available cloud services.		

Bibliography:

Sr. No.	Book Detail	Year of Publication		
1.	Cloud Computing: From beginning to end by Ray J Rafaels, CreateSpace Independent Publishing Platform	2015		
2.	Privacy and Security for Cloud Computing by Siani Pearson, George Yee, Springer	2015		
3.	Cloud Computing: A Practical Approach for Learning and Implementation by A. Srinivasan and J. Suresh, Pearson			
4.	Cloud Computing: Methodology, Systems, and Applications by Lizhe Wang, Rajiv Ranjan, Jinjun Chen, BoualemBenatallah, CRC Press			
5.	Cloud Computing: Principles, Systems and Applications by Nick Antonopoulos and Lee Gillam, Springer			
6.	Cloud Computing: Principles and Paradigms by RajkumarBuyya, James Broberg, Andrzej M. Goscinski, Wiley	2010		
7.	Cloud Computing Bible by Barrie Sosinsky, Wiley			
8.	Cloud Computing by Velte, Tata McGraw-Hill	2009		

- $1.\ https://www.edx.org/course/cloud-computing-security-usmx-university-maryland-university-cc617x$
- 2. https://www.coursera.org/specializations/cloud-computing

Course Name	:	Recommender Systems
Course Code	:	CSM5201
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To learn the basic concepts and techniques of recommender systems, including collaborative and content-based filtering techniques, and techniques for computing contextual recommendations, recommendations for groups, packages recommendations and diverse recommendations.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction, Search and Filtering Techniques, Applications of	6
	recommendation systems, Issues with recommender system, Collaborative	
	Filtering, Content-based Filtering.	
2.	Evaluation designs: Accuracy, Coverage, confidence, novelty, diversity,	4
	scalability, and serendipity.	
3.	Contextual Recommendations, Social tagging recommender systems,	4
	Explanations in Recommender Systems	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project to demonstrate various search and filtering techniques for	3
	recommender system.	
2.	Project to demonstrate use of various evaluation metrics like used in	3
	recommender system.	
3.	Project to use the recommender system in social media tagging.	4
4.	Project to illustrate scalability issue in recommender system.	4

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Present the scientific underpinnings of recommender systems and design		
	recommendation system for a particular application domain.		
2.	Evaluate recommender systems on the basis of metrics such as accuracy, rank		
	accuracy, diversity, product coverage, and serendipity		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Recommender Systems: The Textbook by Charu C. Aggarwal	2016
1.	(Author), springer, 2016	
2.	Recommender Systems Handbook by Francesco Ricci (Editor),	2011
	LiorRokach (Editor), Bracha Shapira, springer, 2011.	
3.	Statistical Methods for Recommender Systems, Deepak K. Agarwal,	2016
	LinkedIn Corporation, California, Bee-Chung Chen, LinkedIn	
	Corporation, California, 2016,	
4.	Collective Intelligence in Action, SatnamAlag, September 2008,	2008
	Manning Publications Co.	

Available MOOCS:

1. https://www.coursera.org/specializations/recommender-systems

Course Name	:	Web Crawlers and Search Engines
Course Code	:	CSM5202
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

1. To learn the theoretical and engineering aspects of search engine technology and various algorithms that are used in the major components of large scale search engines.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview and Crawlers: Architecture of a general-purpose search	3
	engine, such as Google or AltaVista.	
2.	Indexing and Retrieval: Indexing and retrieving text files by words,	4
	Database structure.	
3.	Link Analysis for Ranking: Using link structure to evaluate the	4
	importance of a Web page. PageRank.	
4.	Evaluation: Measuring the quality of a search engine. Precision/recall	3
	and other measures.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project to give basic understanding of web crawler.	3
2.	Project to implement basic focused crawling strategy using various sopping	3
	criteria.	
3.	Project to analyse the link structure between various webpages.	4
4.	Project to use various evaluation metrics to compare the implemented	4
	crawler performance with pre-existing crawlers.	

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Have a good understanding of techniques used for improving ranking of webpages		
	and be able to apply these concepts into practice.		
2.	Improve ranking of web pages on commonly used search engines		
3.	Avoid use of black hat techniques which may result in websites being banned		

Sr. No.	Book Detail	Year of Publication
1.	SoumenCharkabarti, Mining the Web: Discovering Knowledge from	2002

	Hypertext Data, Morgan Kaufmann, 2002.	
	The Anatomy of a Large Scale Hypertextual Web Search Engine	1998
2.	Sergey Brin and Lawrence Page, Seventh International World Wide	
	Web Conference, 1998.	
3.	Searching the Web Arvind Arasu et al., ACM Transactions on Internet	2001
3.	Technology, 2001.	
4	Information Retrieval: Implementing and Evaluating Search Engines	2016
4.	(MIT Press) February, 2016 by Stefan Büttcher, Charles L. A. Clarke.	
5.	Modern Information Retrieval: The Concepts and Technology behind	2016
	Search (2nd Edition) (ACM Press Books), 2016	

Available MOOCS:

1. https://www.coursera.org/learn/text-retrieval

Course Name	:	Image and Video Processing
Course Code	:	CSM5203
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

The	The main objectives of this course are:			
1.	To learn the basic theory and algorithms those are widely used in digital image			
	processing.			
2.	To learn current technologies and issues those are specific to image processing systems.			
3.	To develop hands-on experience to process images.			

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction and Fundamental to Digital Image Processing: Origin of	3
	Digital Image Processing, Fundamental steps in Digital Image Processing,	
	Components of Digital Image Processing System, Image sensing and	
	acquisition, Image sampling, quantization and representation, Basic	
	relationship between pixels.	
2.	Image Enhancement in the Spatial Domain & Frequency domain	4
	Basic grey level transformation, Histogram processing, Basics of Spatial	
	filtering, Smoothing and Sharpening spatial filters, Introduction to Fourier	
	Transform and the Frequency Domain, Discrete Fourier Transform,	
	Smoothing and Sharpening Frequency –Domain filters.	
3.	Image Compression: Fundamentals, Image compression models, Error	3
	free compression, Lossy compression.	
4.	Video enhancement: noise reduction, super-resolution, scratch/dust	2
	removal	
5.	Video compression:	2
	motion-compensated hybrid DCT/Differential pulse-code modulation	
	(DPCM) coding, H.26X and MPEG-X families of compression standards,	
	error resilience in video coding	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Analysis of image and video files	2
2.	Implementing image enhancement techniques	4
3.	Implement smoothing and sharpening	2
4.	Implement video enhancement techniques	4
5.	Implement image and video compression techniques	2

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Develop image processing applications.		
2.	Develop video processing applications.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Digital Image processing By Rafael C. Gonzalez and Richard E. Woods - Pearson Education, 3 rd edition	2008
2.	Fundamentals of Digital Image Processing by A.K. Jain, Prentice Hall	1994
3.	Digital Image processing: An algorithmic approach By Madhuri A Joshi, Prentice Hall, 1 st Edition	2006

- 1. https://www.coursera.org/learn/digital
- $2.\ https://www.my-mooc.com/en/mooc/digital/\\$

Course Name	:	Mobile Computing
Course Code	:	CSM5204
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:				
1.	To understand the concept and role of mobile computing.				
2.	To provide familiarity with the network protocol and modern mobile wireless				
	communication				

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview of wireless and mobile systems and the challenges therein.	2
	Radio channel and wireless physical layer design. Medium access,	
	multiplexing, link adaptation.	
2.	Multi-hop routing protocols, routing metrics. Multicast, multi-hop data	4
	forwarding, opportunistic routing. Solutions to handle mobility at various	
	layers of the networking stack. TCP behaviour over wireless, other	
	transport layer issues.	
3.	Basic Mobile IP, Mobile IP Type-MIPV4 and MIPv6, Mobile IP:	5
	Concept, Four basic entities for MIPv4, Mobile IPv4 Operations,	
	Registration, Tunnelling, MIPv4 Reverse Tunnelling, MIPv4 Triangular	
	Routing, Problems and Limitations of Mobile IP (MIP), MIPv4 Route	
	Optimization Energy efficiency, localization, security. Smartphone-based	
	platform architectures and applications. Future directions: dynamic	
	spectrum access, heterogeneous networks, internet of things.	
4.	Evolution of Modern Mobile Wireless Communication System, First	3
	Generation Wireless Networks, Second Generation (2G) Wireless Cellular	
	Networks, Major 2G standards, 2.5G Wireless Networks, Third	
	Generation 3G Wireless Networks, Wireless Local Area Networks	
	(WLANs), Cellular –WLAN Integration, All-IP Network: Vision for 4G	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Use network simulators (NS2/NS3/NetSim etc.)	6
	Enhance any routing or mac layer protocol to provide quality of service	
	metrics to VoIP or Video traffic.	
2.	Develop, implement and evaluate different path selection criteria for on-	4
	demand routing protocols to determine under	
	what network conditions each one gives the best performance.	

3.	Create a small application for smartphones using android programming	4

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Analyze the applications of mobile telecommunication systems and design		
	applications for Smartphone-based architectures.		
2.	Assess the performance of routing protocols and transport layer protocols for a given		
	network.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	G. Coulouris, DollimorenadKindberg: Distributed Systems- Concepts and Design, fourth Edition.	2009
2.	Jochen Schiller: Mobile Communications, Second Edition, Pearson Education.	2003

- $1.\ https://www.edx.org/course/mobile-computing-with-app-inventor-cs-principles-0$
- 2. http://nptel.ac.in/courses/106106147/

Course Name	:	Wireless Sensor Networks
Course Code	:	CSM5205
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:		
1.	To have an understanding of the fundamental concepts of wireless sensor networks	
	along with the various protocols used at various layers	
2.	They should learn to apply sensor network protocols, mechanisms, and algorithms to	
implement sensing systems.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction	2
	Brief Introduction to Wireless Networks: An introduction to Global System	
	for Mobile communications (GSM), General Packet Radio Service	
	(GPRS)/ 3G/ Long-Term Evolution (LTE)	
	/ "4G, Bluetooth/ Bluetooth Low Energy/ Profiles, Applications of wireless	
	sensor networks.	
2.	Node Architecture	3
	The Sensing Subsystem - Analog-to-Digital Converter; The Processor	
	Subsystem, Communication Interfaces, Prototypes.	
3.	Sensor Network Protocol Stack	4
	Physical layer, Medium Access Control: Wireless Medium Access	
	Control (MAC) Protocols, Characteristics of MAC Protocols in Sensor	
	Networks, Contention-Free MAC Protocols, Contention-Based MAC	
	Protocols, Hybrid MAC Protocols, Fundamentals on PHY, Medium	
	Access Control Sublayer for Low-Rate Personal and Body-Area Networks	
	((Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 / IEEE	
	802.15.6)	
4.	Localization	5
	Localization and positioning Ranging Techniques, Range-Based	
	Localization, Range-Free Localization, Event-Driven Localization, WSN	
	programming, Distributed detection, Distributed estimation	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1	Sensing data using WSN motes.	3
2	Simulating WSNs made up of motes running TinyOS using the TinyOS	3
	simulation framework TOSSIM. This header file can be used to easily	

	output binary data as a hex dump.	
3	Collecting, disseminating and processing data in WSNs and using Deluge	4
	to disseminate programs.	
4	Introduction to the use of cryptographically secured (private key)	4
	communication in WSNs.	

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Understand communication protocols for wireless sensor networks.		
2.	Design function of the node architecture and use of sensors for various applications.		
3.	Use operating systems and programming languages for wireless sensor nodes.		
4.	Be familiar with architectures, functions and performance of wireless sensor networks		
	systems and platforms.		
5.	Analyze the specific requirements for applications in wireless sensor networks		

Bibliography:

Sr. No.	Book Detail	Year of Publication		
1.	W. Dargieand C. Poellabauer, "Fundemntalsof Wireless Sensor Networks – Theoryand Practice", Wiley.	2010		
2.	KazemSohraby, Daniel Minoli and TaiebZnati, "wireless sensor networks - Technology, Protocols, and Applications", Wiley Interscience.			
3.	Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann, "Wireless Sensor Network Technologies for the Information Explosion Era", Springer.			
4.	4. Edgar H. Callaway, "Wireless Sensor Networks: Architectures and Protocols", CRC press.			
5.	5. C. S. Raghavendra, Krishna M. Sivalingam and TaiebZnati, "Wireless sensor networks", kluwer academic publishers.			
6.	6. Feng Zhao and Leonidas J. Guibas, "Wireless Sensor Networks: An Information Processing Approach", Elsevier.			
7.	9 11			
8.	8. Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John wiley and sons.			
9.	Rajeev Shorey, A. Ananda, MunChoon Chan and Wei Tsang Ooi, "Mobile, wireless, andSensor networks - technology, applications, and future directions", IEEE press and wileyinterscience.	2006		

- $\textbf{1.}\ https://www.coursera.org/lecture/internet-of-things-history/sensor-networks-n-to-1-iOmzK$
- 2. https://swayam.gov.in/course/4408-wireless-adhoc-and-sensor-networks

Course Name	:	Advanced Data Warehouse and Data Mining
Course Code	:	CSM5206
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures:14 Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:			
1.	1. To understand the basic concepts of Data Warehouse and Data Mining techniques.		
2.	To analyse supervised and unsupervised models, apply pre-processing methods on raw		
	data and estimate the accuracy of the data mining algorithms.		

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Overview:	3
	Data Warehouse Modelling: Data Cube and Online Analytical Processing	
	(OLAP), Data Warehouse Design and Usage: A Business Analysis	
	Framework for Data Warehouse Design	
2.	Classification:	3
	Decision Tree Induction, Bayes Classification Methods, Rule-Based	
	Classification, Techniques to Improve Classification Accuracy:	
	Introducing Ensemble Methods, Bagging, Boosting and AdaBoost.	
3.	Clustering:	4
	Overview of Basic Clustering Methods, Partitioning Methods,	
	Hierarchical Methods: Agglomerative versus Divisive Hierarchical	
	Clustering, Distance Measures in Algorithmic Methods	
4.	Mining Complex Data Types:	4
	Mining Sequence Data: Time-Series, Symbolic Sequences and Biological	
	Sequences, Mining Other Kinds of Data, Data Mining Applications	

Lab Work:

Sr.	Lab contents	No. of		
No.		Hours		
1.	Demonstration of Association rule process on any dataset using Apriori	4		
	algorithm.			
2.	Demonstration of classification rule process on any dataset.			
3.	Demonstration of clustering rule process on any dataset using simple k-	2		
	means			
4.	Demonstration of differences in results using decision tree and cross-	4		
	validation on a data set.			

Course Outcomes:

At the end of the course, students will be able to:		
1.	Process raw data to make it suitable for various data mining algorithms.	
2.	Apply the techniques of clustering, classification, association finding, feature	
	selection and visualization to real world data	

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Han J & Kamber M, "Data Mining: Concepts and Techniques", Third Edition, Elsevier.	2011
2.	Pang-Ning Tan, Michael Steinback, Vipin Kumar, "Introduction to Data Mining", Pearson Education.	2008

- 1. https://www.coursera.org/learn/dwdesign
- $2.\ https://www.edx.org/course/delivering-relational-data-warehouse$

Course Name	:	Crowd-Sensing and Pervasive Computing
Course Code	:	CSM5207
Credits	:	1.5
LTP	:	300
Segment	:	4-6

Course Objectives:

The main objectives of this course are:

1. To teach the basics of ubiquitous computing (also known as pervasive computing) as well as the basics of research, including reading research papers, speaking and presentation, formulating research questions, and empirical investigation.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction:	2
	Definitions (Mobile, Ubiquitous Computing, IoT, Android Introduction	
	and Setup)	
2.	Location-Aware computing	
	(determining location, geocoding, Maps & Google places) Databases,	
	Introduction to Context, Context-Aware computing, Introduction to	
	sensors, Android sensor programming Human-centric sensing	4
	(detecting user state, step counting, activity recognition, inferring user	
	intent	
3.	Wearable computing & Social Media	
	, Glass and Augmented Reality, Eye-Tracking, Digital Pen and Paper.	
	Mobile social networking & crowd sensing, Event based social network	3
4.	Mobile affective computing	
	Human Activity and Emotion Sensing, Health Apps, Mobile p2p	
	computing, Smart Homes and Intelligent Buildings	3
5.	IoT and data analytics	
	IOT and Data Management, Data cleaning and processing, Data	3
	storage models, Search techniques, Deep Web, Semantic sensor web,	
	Semantic Web Data Management, Searching in IOT	
6.	Crowd Sensing	
	Real-time and Big Data Analytics for The Internet of Things/Mobile	4
	Sensors, Heterogeneous Data Processing, High-dimensional Data	
	Processing, Parallel and Distributed Data Processing	
7.	Crowd sensing data using various sensors	2
	Incentivization Models for Crowdsourced data and Privacy Issues	_

Course Outcomes:

At the end of the course, students will be able to:

1.	Have clear understanding of socio-physical systems
2.	Relate to current trends in pervasive computing and develop a sense of practicality.
3.	Be able to develop application for embedded devices including pocket PCs, PDAs
	and wireless phones

Bibliography:

Sr. No.	Book Detail	Year of Publication
	Sensing and Systems in Pervasive Computing: Engineering Context	2011
1.	Aware Systems, By Dan Chalmers (2011), Springer Science &	
	Business Media	
2.	Principles of Mobile Computing, Hansmann, Lothar Merk, Martin	2013
۷.	Niclous, Stober	
3.	Mobile Computing, Tomasz Imielinski, Springer	2014
1	Pervasive Computing, 2nd Ed., by Uwe Hansmann, et.al. Springer	2003
4.	Verlag	

Available MOOCS:

1. http://nptel.ac.in/courses/108102045/37

Course Name	:	Cryptocurrency and Blockchain Technology
Course Code	:	CSM5208
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total no. of lectures: 14 Total no. of lab hrs: 14

Course Objectives:

The main objectives of this course are:	
1.	To have a basic understanding of blockchain technology and cryptocurrency and to study
	the security issues and safeguards related to bitcoin trading.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Course Description and Blockchain, Disruption/News: Price Rise, Distinction between Blockchain vs Cryptocurrency vs Token, Definition diagram: Pillars of Blockchain, Industry Applications of Blockchain: Government, Healthcare, His- tory of Centralized Services, trusted third party: Shift from gold standard to flat currency to Hash cash/digital currency (look at BEM)/Bitcoin, Trustless system, Immutability, Security, Privacy, Anti-fragility, etc.	6
2.	Cryptocurrency and Markets: Cryptocurrencies - talk about Bitcoin / Ethereum, where is the value - what are people investing in, Methods to purchase Bit- coins/Ethereum Setting up a Wallet.	4
3.	Issues with Blockchain: Security and Safeguards, Protection from attackers, Hacks on exchanges, what is stopping adoption, Scalability problems, Network attacks to destroy bitcoin, Legal adoption in various countries and laws.	4

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Implementation of blockchain concept and related projects that will give	14
	practical experience in real world blockchain development scenarios.	

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Build efficient blockchain models to carry out advanced tasks with the practical		
	approach.		
2.	Evaluate the use and risks involved with Blockchain.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Blockchain: The Complete Step-by-step Guide to Understanding Blockchain and the Technology Behind It by Jay Isaac	2012
2.	Research Papers	

- 1. https://www.coursera.org/learn/cryptocurrency
- 2. https://www.edx.org/course/blockchain-and-fintech-basics-applications-and-limitations

ENGINEERING MATHEMATICS

Course Name	:	Number Theory and Finite Fields
Course Code	:	EMM5014
Credits	:	1
LTP	:	2-1-0
Segment	:	1-2

Total No. of Lectures—10
Total No. of Tutorials -5

Course Objectives:

The n	The main objectives of this course are:			
1.	To describe the fundamental properties of integers and to prove basic theorems.			
2.	To solve congruences and generate random numbers.			
3.	To understand the basic concepts of groups, rings and finite fields.			

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction, Divisibility, The Euclidean algorithm, primes, Fundamental	04
	theorem of Arithmetic, Congruences, Residue classes and reduced residue	
	classes, Generation of random numbers using mid square method and	
	congruence method.	
2.	Fermat's theorem, Euler's theorem, Solution of congruences, Chinese	04
	Remainder theorem with applications, Euler's φ-function,	
3.	Groups, Rings and Fields, Finite Fields GF(p ⁿ)	02

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Describe the fundamental properties of integers		
2.	Prove basic theorems and solve congruences.		
3.	generate random numbers		

Sr. No.	Book Detail	Year of Publication
110.	"A '	
1	"An introduction to theory of numbers", Niven I., Zuckerman S. H. and	1991
1.	Montgomary L. H., John Wiley and Sons.	
2	"Theory of Numbers", Hardy and Wright W. H., Oxford University	2008
2.	Press.	
3.	"Higher Arithmetic", Davenport H., Cambridge University Press	2008
1	"Elementary Number Theory", David M. Burton, Wm.C.brown	2011
4.	Publishers, Dubuque, Ivova.	
5.	"Cryptography and Network Security" William Stallings, Pearson	2003

Course Name	:	Discrete Mathematics
Course Code	:	EMM5015
Credits	:	1
LTP	:	210
Segment	:	3-4

Total no. of lectures: 10 Total no. of tutorials: 4

Course Objectives:

The n	The main objectives of this course are:		
1.	To will cover theoretical as well as practical aspects of probability and graph theory.		
2.	To develop the student's ability to test and evaluate the performance of an algorithm.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Probability:	
	Pre-requisites: Introduction, Methods of Counting: permutation and	2
	combination, Pigeonhole principle; Sample Space; Conditional Probability;	
	Bayes theorem and its applications in building spam filters, legitimacy of	
	an attack.	
2.	Graph Theory:	
	Graph terminology, Handshaking lemma, Connectivity, Planarity of	4
	graphs, Graph Coloring, using graphs to represent social relationships,	-
	graphs and socio-grams, levels of measurement	
3.	Formal Methods of Proof:	
	Direct Proving Techniques: by cases, induction, strong induction and	2
	structural induction; Indirect Proving Techniques: by contradiction, by	2
	contrapositive; Application in proving the correctness of algorithms	
4.	Growth of Functions:	
	Types of growth functions, masters theorem, computing asymptotic time	
	and space complexity of algorithms	2

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	Have a clear understanding of various topics of graph theory and their application in		
	computer science		
2.	Test and evaluate a given algorithm Check efficiency of an algorithm		

Sr. No.	Book Detail	Year of
No.	DOOK Detail	Publication
1.	Graph theory by Reinhard Diestel	2000
2.	Discrete Mathematics and its applications by Kenneth Rosen	2007
3.	An Introduction to Probability Theory and its Applications vol 1 by Willam Feller, Third Edition.	2008

4	Introduction to Algorithms by Cormen, Leiserson, Riverst, and Stein,	2009
4.	Third Edition.	

Course Name	:	Optimization Techniques and Genetic Algorithm
Course Code	:	EMM5012
Credits	:	01
LTP	:	2-0-2
Segment	:	5-6

Total No. of Lectures – 10

Total No. of Practical's -10

Course Objectives:

The n	The main objectives of this course are:	
1.	To understand the need of Optimization Techniques and develop the ability to form	
	mathematical model of optimization problems.	
2.	To identify and solve various optimization problems using Genetic Algorithms.	

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to optimization problem, local and global optimum, conversion of a constrained problem to unconstrained problem.	04
2.	Genetic Algorithms, Binary and Real coded Genetic Algorithms, Coding and decoding of variables, Key steps in a GA, starting population, fitness evaluation, reproduction, crossover, mutation, evaluation.	06

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Using Genetic Algorithms in various optimization Problems	10

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	The students are able to form mathematical model of optimization problems.		
2.	The students are able to distinguish between linear and nonlinear models.		
3.	The students are able to solve simple problems using Mathematica/MATLAB		

Sr. No.	Book Detail	Year of Publication
1	"Practical Genetic Algorithms", Haupt, R. L. and Haupt, S.E., John	1998
1.	Wiley & Sons	
2	"Genetic Algorithm in Search, Optimization and Machine Learning", Goldberg, D.E., Addison Wesley.	1989
2.	Goldberg, D.E., Addison Wesley.	
3.	"Engineering Optimization", Ranjan, Ganguli, University Press.	2011

SEMESTER – II

SOFT SKILLS & & MANAGEMENT

Course Name	:	Communication Skills (CS)
Course Code	:	SSM5021
Credits	:	1.5
LTP	:	0-1-4
Segment	:	1-2

Total no. of Tutorials: 07 Total no. of lab hrs: 28

Course Objectives:

The r	The main objectives of this course are:	
1.	1. To enhance competence in communication skills: verbal and nonverbal.	
2.	To provide orientation in technical communication skills: spoken and written.	
3.	To sensitize students to attitude formation and behavioural skills.	

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to Communication Skills, Soft Skills and Interpersonal	1
	Communication	
2.	Speech: Structure, Elements, Content, Organization and Delivery	1
	J-a-M	
3.	Writing Skills: Letters, Minutes of Meeting	1
4.	Technical Report Writing: Concept & Structure	1
5.	Research Writing: Concept & Structural Framework	1
6.	Power Point Presentation: Project Presentation	1
7.	Interviews	1

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Self- Introduction	2
2.	Negotiation Skills & Role Play	2
3.	J-a-M Session	2
4.	Building Word Power through Reading	2
5.	Group Discussion and Case Study	4
6.	Writing Skills: Letters, Minutes of Meeting	2
7.	Technical Report Writing: Concept & Structure	4
8.	Research Writing: Concept & Structural Framework	4
9.	Power Point Presentation: Project Presentation	4
10.	Interviews	2

Course Outcomes:

At the	At the end of the course, students will be able to:			
1.	The students will enhance their competence in communication skills and technical			
	communication and develop awareness of attitude formation and behavioural			

	appropriateness.
2.	The course will address the gap which exists between employer expectations and
	student proficiency.

Sr. No.	Book Detail	Year of Publication
1.	Technical Communication, Meenakshi Raman and Sangeeta Sharma, Oxford University Press	2015
2.	English for Research Paper Writing, Adrian Wallwork, Springer, London	2011
3.	English Vocabulary In Use: Advanced+ CD, McCarthy Michael, CUP, Cambridge	2004
4.	Advanced English Grammar, Martin Hewings, CUP, Cambridge	2003
5.	Study Listening, Lynch Tony, CUP, Cambridge	2004
6.	Study Speaking, Anderson Kenneth, CUP, Cambridge	2010
7.	Study Reading, Glendenning H. Eric, CUP, Cambridge	2004
8.	Study Writing , Lyons Liz Hamp & Ben Heasley, CUP, Cambridge	2004
9.	Study skills in English, Michael J. Wallace, CUP, Cambridge	2004

Course Name	:	Management and Entrepreneurship/ IPR
Course Code	:	SSM5022
Credits	:	1
LTP	:	0-3-0
Segment	:	3-4

Course Objectives:

The n	The main objectives of this course are:		
1.	To make students familiar with the concepts of Management and Entrepreneurship and		
	understand how to develop new start-up and manage it effectively.		
2.	To create awareness about the concepts of Innovation, Ideation and IPR.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Principles and Functions of Management	1
2.	Planning Process - Hypothetical Planning of an Event/Activity	1
3.	Form of Organization Structure - Case Study	1
4.	Human Resource Planning and Process, Current HR Practices	2
5.	Elements of Directing and Effective Control Mechanism	2
	Activity: Role Playing/Management Game	
6.	Concepts of Entrepreneurship and Characteristics of Entrepreneurs	1
7.	Development Phases of Entrepreneurship	4
	-Idea Generation	
	-Project Formulation and Validation	
	-Business plan	
8.	Ecosystem for Entrepreneurship Development and IPR	2

Course Outcomes:

At the end of the course, students will be able to:		
1.	The students will learn to develop and manage new project/start-up.	
2.	The students will be able to use management skills for success of business venture.	

Sr. No.	Book Detail	Year of Publication
1	"Entrepreneurship", TrehanAlpana, Dreamtech Press/Wiley India	2018
1.	Publication.	
2	"Management Principles and Practice", Srinivasan R. and Chunawalla	2017
2.	S.A., Himalaya Publishing House.	
	"Essentials of Management: International and Leadership	2012
3.	Perspective", WeihrichH.and Koontz H., 9th Edition, Pubs: McGraw	
	Hill.	

4	"The New Era of Management", Daft R.L., 11th Edition, Pubs:	2014
4.	Cengage Learning.	
5.	"Principles & Practice of Management", Prasad L.M., 8 th Edition,	2015
<i>J</i> .	Pubs: Sultan Chand & Sons.	
6	"Management: Text and Cases", Rao V.S.P. and Krishna V.H., Pubs:	2008
6.	Excel Books.	
_	"Management: Concept, Practice and Cases", Aswathappa K. and	2010
7.	GhumanKarminder, Pubs: Mc Graw Hill Education.	
8.	"Dynamics of Entrepreneurial Development & Management", Desai	2012
0.	V., 5 th Edition, Pubs: Himalaya Publishing House.	
	"Projects: Planning, Analysis, Selection, Financing, Implementation	2014
9.	and Review", Chandra P., 8 th Edition, Pubs: McGraw-Hill Education	
	(India).	
10.	"Entrepreneur's Toolkit", Harvard Business School, Pubs: Harvard	2004
10.	University Press.	
11.	"Essentials of Project Management", Ramakrishna K, Pubs: PHI	2010
11.	Learning.	
12.	Harvard Business Review: Entrepreneur's Handbook	2018
12.	That vara Business Review. Entrepreneur s Handook	
13.	WIPO Annual Publications	
13.		

Course Name	:	Professional Ethics
Course Code	:	SSM5023
Credits	:	0.5
LTP	:	0-3-0
Segment	:	5-6

Total No. Tutorials: 07

Course Objectives:

The main objectives of this course are:

1. To provide basic knowledge about ethics, values, norms and standards and their importance in professional life.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to Ethics: Concept of Ethics – Nature, Scope, Sources,	2
	Types, Functions and Factors influencing Ethics.	
2.	Self-Awareness & Self Development: Concept of Self Awareness –	2
	Need, Elements, Self-Assessment – SWOT Analysis, Self-Concepts –	
	Self-Knowledge, Assertiveness and Self-Confidence, Self-Esteem,	
	Concept of Self-Development, Social Intelligence, Emotional Intelligence,	
	Managing Time and Stress, Positive Human Qualities (Self-Efficacy,	
	Empathy, Gratitude, Compassion, Forgiveness and Motivation	
3.	Ethics and Business: Concept of Business Ethics – Nature and	1
	Objectives. Ethical dilemmas in business ethics.	
4.	Professionalism in engineering and its relation to ethics: Ethics in	2
	Practice: Professional accountability, Roles of Professionals.	

Course Outcomes:

At the	At the end of the course, students will be able to:			
1.	The students will be able to distinguish between right and wrong in both personal and			
	professional life.			
2.	The students will learn about their strengths, weaknesses, opportunities & threats and			
	work enthusiastically to transform weaknesses into strengths and threats into			
	opportunities.			

Sr. No.	Book Detail	Year of Publication
1	"Business Ethics – Text and Cases", Murthy C.S.V., 1 st Edition, Pubs:	2014
1.	Himalaya Publishing House.	
	"The Curse of Self: Self-awareness, Egotism and the Quality of Human	2007
2.	Life", Leary M.R., 1st Edition, Pubs: Oxford University Press.	
3.	"Business Ethics", Hartman L.P. and Chatterjee A., 3 rd Edition, Pubs:	2006
٥.		

	Tata McGraw Hill	
4.	"Business Ethics and Professional Values", Rao A.B., Pubs: Excel Books	2006
5.	"Business Ethics – Concepts and Cases", Velasquez M.G., 5 th Edition, Pubs: Prentice Hall	2001
6.	"Issues and Ethics in the Helping Professions", Corey G., Corey M.S. and Callanan P., 8 th Edition, Pubs: Brooks/Cole, Cengage Learning	2010
7.	"Theories of Personality", Hall C.S., Lindzey D. and Cambell J.B., 4 th Edition, Pubs: Hamilton Printing Company	1997

PROGRAM CORE

Course Name	:	Data Science
Course Code	:	CSM5031
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28 Total No. of Lab hrs. 28

Course Objectives:

The n	The main objectives of this course are:	
1.	To provide with the knowledge and expertise to become a proficient data scientist.	
2.	To demonstrate an understanding of statistics and machine learning concepts that are	
	vital for data science	

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to Data Science:	2
	What is data science, relation to data mining, machine learning, big data and statistics, Motivating examples	
2.	Getting To Know Your Data: From data to features- Interactive group discussion, Representing problems with matrices, Representing problem with relations Computing simple statistics- Means, variances, standard deviations, weighted averaging, modes, quartiles Simple visualizations-Histograms, Boxplots, Scatterplots, Time series, Spatial data	2
3.	Overview of Tasks & Techniques: Prediction:	2
	The prediction task-Definition, Examples, Format of input / output data Prediction algorithms- Decision trees, Rule learners, Linear/logistic regression, Nearest neighbour learning. Support vector machines Properties of prediction algorithms and practical exercises, Combining classifiers	
4.	Evaluation and Methodology of Data Science:	2
	Experimental setup- Training, tuning, test data, Holdout method, cross-validation, bootstrap method Measuring performance of a model- Accuracy, ROC curves, precision-recall curves, Loss functions for regression Interpretation of results-Confidence interval for accuracy, Hypothesis tests for comparing models, algorithms	
5.	Data Engineering:	2
	Attribute selection- Filter methods, Wrapper methods Data discretization- Unsupervised discretization, Supervised discretization Data transformations- PCA and variants	
6.	Overview of Tasks & Techniques: Probabilistic Models:	2

	Introduction- Probabilities, Rule of Bayes and Conditional Independence Naive Bayes- Application to spam filtering Bayesian Networks- Graphical representation, Independence and correlation	
	Temporal models- Markov Chains, Hidden Markov Models	
7.	Overview of Tasks & Techniques: Exploratory Data Mining:	2
	Introduction to Exploratory Data Mining Association discovery- What is association discovery?, What are the challenges?, In detail: Apriori Clustering- What is clustering?, What are the challenges?, In detail: agglomerative clustering	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Case Studies in Data Science: Eve, the Pharmaceutical Robot Scientist:	10
	Data Science for Drug Discovery	
2.	Case Studies in Data Science: Data science for sports analytics	10
3.	Case Studies in Data Science: Data science for sensor data (Introduction to	8
	challenge)	

Course Outcomes:

	At the end of the course, students will be able to:		
1.	Create competitive advantage from both structured and unstructured data		
2.	Predict outcomes with supervised machine learning techniques.		
3.	3. Unearth patterns in customer behaviour with unsupervised techniques.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Joel Grus, Data Science from Scratch: First Principles with Python,	
1.	O'Reilly Media	
2.	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An	
۷.	Introduction to Statistical Learning, Springer Texts in Statistics	
3.	I. Witten, E. Frank, M. Hall. Data Mining: Practical Machine Learning	
3.	Tools and Techniques (3rd Edition), Morgan Kaufmann	

- 1. https://www.coursera.org/browse/data-science?languages=en
- **2.** https://www.edx.org/learn/data-science

Course Name	:	Soft Computing
Course Code	:	CSM5041
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28 Total No. of Lab hrs. 28

Course Objectives:

The r	The main objectives of this course are:	
1.	1. To understand and analyse various soft computing techniques for a given problem.	
2.	2. To get familiar with latest trends for problem solving in soft computing domain.	

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to Soft Computing and MATLAB/ SCI LAB or any other open source software Evolution of Computing: Soft Computing Constituents Arrays and array operations, Functions and Files	4
2.	Fuzzy Logic Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making	5
3.	Neural Networks Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis Function Networks: Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures, Advances in Neural networks	8
4.	Genetic Algorithms Introduction to Genetic Algorithms (GA), Applications of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition	6
5.	Recent Trends Recent Trends in deep learning, various classifiers, neural networks and genetic algorithm. Implementation of recently proposed soft computing techniques	5

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Setting up MATLAB	2
2.	Experiments with neural network toolbox	4
3.	Experiments with fuzzy logic toolbox	4
4.	Implementing fuzzy logic	6

5.	Implementing artificial neural network	6
6.	Implementing genetic algorithms	6

Course Outcomes:

At the end of the course, students will be able to:			
1.	Identify and describe soft computing techniques and their roles in building intelligent		
	machines		
2.	Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering		
	problems		
3.	Apply genetic algorithms to combinatorial optimization problems		
4.	Evaluate and compare solutions by various soft computing approaches for a given		
	problem		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence", Prentice Hall of India	2009
2.	S. N. Deepa, S. N. Shivanandam, "Principles of Soft Computing", Wiley India, 2 nd Edition	2011
3.	George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall of India	2009

- 1. https://www.class-central.com/tag/soft%20computing
- **2.** https://swayam.gov.in/course/4574-introduction-to-soft-computing

PROGRAM ELECTIVE

Course Name	:	Social Network Analytics
Course Code	:	CSM5301
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To ingest and visualize social media data, render network visualizations, and understand accuracy, bias, validity, and repeatability in social media representation.

Course Contents:

Sr.	Sr. Course contents	
No.		Lectures
1.	Overview of Social Media:	2
	Definitions, cognitive and sociological theories for motivation to use	
	social media, history of social media, varied uses of different platforms,	
	Application Programming Interface (APIs).	
2.	Graphs and Centrality:	2
	Terminology, basic graph theory, and network centrality measures.	
	Students will be taught to calculate basic centrality measures by hand.	
3.	Social Theory and Network Topology:	2
	Sociological theories behind the formation of relationships and group	
	structure. The six social forces (prestige, reciprocity, homophily,	
	propinquity, transitivity, and structural balance) will be introduced.	
4.	Clustering and Subgroup Analysis:	2
	A review of common clustering algorithms for use in networks and their	
	application. Block modelling, modularity, graph reduction, localized	
	network measure.	
5.	Network and Community Measures:	2
	Centralization, fragmentation, clustering coefficient, density, and other	
	graph-level and community measures.	
6.	Data and APIs:	2
	Data considerations to include changing APIs, differing data storage	
	challenges for weighted/unweighted, sparse/dense networks. Collection	
	bias for network chaining, random sampling, missing data, and other	
	collection issues.	
7.	Statistical Analysis of Networks:	2
	Introduction to exponential random graph models. Hypothesis testing and	
	time series analysis.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Provide a general overview of NLP application in social media analysis to	7
	include: machine translation, named entity recognition, part-of-speech	
	tagging, stemming, co-reference resolution.	

2.	Sentiment Analysis and Topic Classification: sentiment analysis	7
	(happy/sad) and topic classification (what are they happy/sad about).	

Course Outcomes:

	At the end of the course, students will be able to:		
1.	Characterize social media clusters and discourse using natural language processing,		
	sentiment analysis and topic classification		
2.	Conduct basic social network analysis to include centrality, subgroup analysis, social		
	theory, and statistical analysis of networks.		
3.	Conduct over-time network analysis including statistical change detection,		
	exponential random graph modelling, and stochastic actor oriented modelling		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Marshall Sponder, "Social Media Analytics: Effective Tools for Building, Interpreting, and Using Metrics"	2013
2.	Gonçalves, Alex, "Social Media Analytics Strategy Using Data to Optimize Business Performance"	2017

- 1. https://www.coursera.org/learn/python-social-network-analysis
- $2.\ https://www.edx.org/course/social-network-analysis-sna-utarlingtonx-link-la-snax$

Course Name	:	Image and Video Analytics
Course Code	:	CSM5302
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

	The main objectives of this course are:	
Ī	1.	To learn object classification and categorization techniques, face detection and activity
		recognition in videos.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Shadow Removal, Invariant Image Representation, Local feature	4
	Extraction	
2.	Biologically Inspired Vision, Object Classification, Categorization, face	4
	detection	
3.	Tracking, Activity Recognition, Anomaly Detection, Intrusion detection,	6
	Handling occlusion, scale and appearance changes	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Applications of local feature extraction	2
2.	Implement object classification techniques	4
3.	Implement activity recognition for videos	4
4.	Building face detection application	4

Course Outcomes:

At the e	At the end of the course, students will be able to:		
1.	1. Understand and implement object classification and categorization techniques		
2.	Understand and implement activity recognition approaches		
3.	3. Understand and develop face detection application		

Bibliography:

Sr. No.	Sr. No. Book Detail	
1.	BoguslawCyganek, "Object Detection and Recognition in Digital	2015
	Images: Theory and Practice", Wiley India	2013

2.	AF. Bobick et al., "The representation and recognition of action using temporal templates", CVPR	1997
3.	Efros et al., "Action Recognition at a Distance", ICCV	2003
4.	X. Sun et al., "Action Recognition via Local Descriptors and Holistic Features", CVPR	2009
5.	Weinland et al., "Action Recognition using Exemplar-based Embedding", CVPR	2008

- 1. https://www.coursera.org/learn/digital
- $2.\ https://www.edx.org/course/sparse-representations-in-signal-and-image-processing-fundamentals$

Course Name	:	Convex Optimization
Course Code	:	CSM5303
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To recognize convex optimization problems and how to solve these numerically using either an existing software library or by deriving/implementing a suitable method that exploits problem structure

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Convex Analysis	4
	Convex sets, cones, inner and outer descriptions, Topological properties,	
	Polyhedral sets and representations, Some main theorems (Caratheodory,	
	Krein-Milman.), Separating and Supporting Hyperplanes, Convex	
	functions, Jensen's inequality, Gradient inequality, Maxima and minima	
	of convex functions, Sub-gradients	
2.	Linear Programming	3
	Structural properties, theorem on alternative, LP Duality, Some	
	applications in classification (machine learning), compressed sensing,	
	network flows	
3.	Convex Programming:	4
	Conic programs, geometric programs (GPs), semi-definite programs	
	(SDPs), Lagrangian, Duality, Optimality conditions (KKT Conditions,	
	saddle points)	
4.	Basic Algorithms:	3
	Gradient descent, Sub-gradient, conjugate-gradient, Newton's method,	
	quasi-Newton methods	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Design a novel optimization method for an existing problem of some	5
	importance.	
2.	Give a novel theoretical proof that an existing optimization method works.	4
3.	Implement a known method and show that it works practically (possibly in	5
	a new setting/regime that has not been considered before).	

At the end of the course, students will be able to:		
1.	Recognize and characterize convex functions and sets	
2.	2. Explain/characterize the subdifferential of a convex function	

3.	Describe basic concepts of convex analysis
4.	Derive the Lagrange dual of a convex optimization problem
5.	Derive a convex relaxation of nonconvex quadratic problems
6.	Implement a first-order method for a large-scale optimization problem with structure
7.	Construct and implement a splitting method for a convex—concave saddle-point problem
8.	Evaluate the computational performance of an optimization algorithm

Sr. No.	Book Detail	Year of Publication
1.	S. Boyd and L. Vandenberghe: "Convex Optimization", Cambridge University Press	2003
2.	A. Ben-Tal and A. Nemirovski: "Lectures on Modern Convex Optimization", lecture notes	2013

Available MOOCS:

1. http://nptel.ac.in/courses/111104068/

Course Name	:	Performance Evaluation of Computer Systems and Networks
Course Code	:	CSM5304
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. Lab Hours: 14

Course Objectives:

The r	The main objectives of this course are:		
1.	To provide students with a working knowledge of computer performance evaluation.		
2.	To cover fundamental techniques such as measurement and mathematical modeling.		

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Probability theory and statistics:	7
	Fundamental definitions and theorems on probability, Uniform	
	probability model. Discrete and continuous random variables. Notable	
	RV distributions (exponential, uniform, Poissonian, normal, binomial,	
	chi-square, student-t etc.). Central limit theorem	
	Sample and population: estimators and confidence intervals. Data	
	analysis and summarization. Model fitting, experiment design.	
2.	Analytical System modelling and capacity planning:	7
	Queueing theory: Markov Property, Poisson processes, birth/death	
	systems. Transient and steady-state solutions. Single-queue systems, open	
	and closed queueing networks.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1	Introduction to OMNeT++	3
2	Hot Potato Routing and Backward Learning	3
3	Distance Vector Routing	4
4	State Machines: Transmission Control Protocol (TCP)	4

At the	At the end of the course, students will be able to:		
1.	Fundamentals of probability calculus, including the properties of some common		
	distributions		
2.	Fundamentals of statistics, especially the difference between a sample and a		
	population, and the concept of confidence intervals		
3.	Fundamentals of simulation theory: how to build a simulator, what the different data		
	structures are, how to generate random numbers, how to carry out a sound simulation		
	study, how to handle output simulation data.		
4.	Fundamentals of analytical modelling through Markov-chain methods		
5.	Extract the salient features from a sample and to present them in the most effective		
	way		

6. Follow a scientific approach to understanding why the performance of a system varies with some factors

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	S.M. Ross "Introduction to Probability and Statistics for Engineers and Computer Scientists", Elsevier	2009
2.	R. Jain "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modelling"	1991
3.	L. Kleinrock, Queueing Systems, vol. 1, Wiley	1975

Available MOOCS:

1. http://nptel.ac.in/courses/106106048/

Course Name	:	Business Analytics
Course Code	:	CSM5305
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:	
---	--

1. To understand how managers use business analytics to formulate and solve business problems and to support managerial decision making.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview of Business Analytics: Introduction to Analytics, Different	4
	types of data; Data summarization methods;	
2.	Organization/sources of data; Importance of data quality; Dealing with	5
	missing or incomplete data; Data Classification	
3.	Introduction to Decision Modelling: Decision Making under	5
	Uncertainty, Introduction to Operations Research (OR), linear	
	programming (LP), formulating decision problems using linear	
	programming, interpreting the results and sensitivity analysis.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project for Optimizing with multiple objectives / portfolio analytics (Using any open source business analytics software)	3
2.	Project for Optimizing complex decisions / salesforce analytics	3
3.	Project to study Predictions and skill versus luck / sports analytics.	4
4.	Project based on Decision-support systems -from concept to deployment- / supply chain analytics.	4

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	1. Understand the role of business analytics within an organization.		
2.	Analyse data using statistical and data mining techniques and understand		
	relationships between the underlying business processes of an organization.		
3.	Use decision-making tools/Operations Research techniques.		
4.	Use advanced analytical tools to analyse complex problems under uncertainty		

Bibliography:

Sr. Book Detail	Year of
-----------------	---------

No.		Publication
1	Business Analytics: Methods, Models, and Decisions by James R.	2014
1.	Evans 2014, pearson	
2.	Business Analytics 1st Edition by Raj Publisher: Cengage Learning	2014
3.	Data Smart: Using Data Science to Transform Information into Insight	2013
	2013 by John W. Foreman, wiley	

- $1.\ https://www.coursera.org/specializations/business-analytics$
- $2.\ https://www.edx.org/course/business-analytics-fundamentals 2.$

Course Name	:	Deep Learning
Course Code	:	CSM5306
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The r	The main objectives of this course are:	
1.	To introduce the fundamentals of deep learning and the main research activities in this field	
2.	To learn architectures and optimization methods for deep neural network training.	

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction:	4
	Meaning and importance of Deep Learning Perceptrons, Perceptron	
	Learning Algorithm, Deep L-Layer Neural Network, Forward	
	Propagation in a Deep Network, Building blocks of deep neural	
	networks, Parameters v/s Hyper-parameters.	
2.	Convolutional Neural Network:	4
	Introduction to CNNs, Architecture, Convolution/pooling layers, CNN	
	Applications	
3.	Recurrent Neural Networks:	4
	Introduction to RNNs, Unfolded RNNs, Seq2Seq RNNs, Long short-	
	term memory (LSTM), RNN Applications.	
4.	Deep Learning Applications:	2
	Image Processing, Natural Language Processing, Speech recognition,	
	Video Analytics	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Implementation of following deep learning algorithms in Python using	4
	TensorFlow:Convolution Neural Network	
2.	Implementation of following deep learning algorithms in Python using	4
	TensorFlow:Recurrent Neural Network	
3.	Project work involving application of Deep Learning	6

At the end of the course, students will be able to:		
	1.	Understand the foundations of deep learning.
	2.	Successfully implement, apply and test relevant learning algorithms in TensorFlow.

3.	Critically evaluate the method's applicability in new contexts and construct new applications.
4.	Follow research and development in the area.

Sr. No.	Book Detail	Year of Publication
1.	Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning.	2016
2.	Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends in Machine Learning 2.1 (2009): 1127	2009
3.	Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. "A convolutional neural network for modelling sentences." ACL (2014).	2014

- $1.\ http://nptel.ac.in/courses/106106184/$
- 2. https://www.edx.org/course/deep-learning-explained

Course Name	:	Big Data Analytics
Course Code	:	CSM5401
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures:14 Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:	
1.	1. To learn Understand big data for business intelligence. Learn business case studies for	
	big data analytics.	
2.	To understand nosql big data management. Perform map-reduce analytics using Hadoop	
	and related tools	

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	What is big data, why big data, convergence of key trends, unstructured	5
	data, industry examples of big data, web analytics, big data and	
	marketing, fraud and big data, risk and big data.	
2.	Introduction to NoSQL, aggregate data models, aggregates, key-value	5
	and document data models, relationships, graph databases, schemaless	
	databases, materialized views, distribution models, sharding, master-slave	
	replication, peer-peer replication, sharding and replication	
3.	Data format, analyzing data with Hadoop, scaling out, Hadoop streaming,	4
	Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS	
	concepts, Java interface, data flow, Hadoop I/O, data integrity,	
	compression, serialization, Avro, file-based data structures	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project to Understand the meaning of big data and its application.	3
2.	Project using NOSQL to get data from unstructured database	4
3.	Project to explore differed open source technologies available for big data	3
4.	Project involving yarn, Pig, grant etc.	4

At the e	At the end of the course, students will be able to:	
1.	Describe big data and use cases from selected business domains	
2.	Explain NoSQL big data management	
3.	Install, configure, and run Hadoop and HDFS	
4.	Perform map-reduce analytics using Hadoop	

5. Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging, 2009	2009
2.	Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.	2013
3.	P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.	2012
4.	Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.	2012
5.	Eric Sammer, "Hadoop Operations", O'Reilley, 2012.	2012

- 1. https://www.coursera.org/learn/big-data-introduction
- 2. https://www.coursera.org/specializations/big-data

Course Name	:	Medical Image Processing
Course Code	:	CSM5402
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. Lectures: 14 Total No. of Lab hrs. 14

Course Objectives:

7	Γhe n	nain objectives of this course are:
1	l.	To learn different types of biomedical images, object detection in biomedical images
		and perform analysis on shape texture and pattern

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction	6
	Nature of Biomedical Images, Digital subtraction Angiography, Dual-	
	energy and energy subtraction X-ray imaging, Multiframe averaging in	
	confocal microscopy	
2.	Image Enhancement and Region of interest detection	5
	Medical image enhancement methods, Region of interest detection: Edge	
	detection, Segmentation and region growing, Breast tumour detection	
	using fuzzy-sets, Object of known geometry, Detection of spinal canal,	
	Detection of Breast boundary in mammograms, Detection of Pectoral	
	muscles in mammograms, Improved segmentation of Breast masses	
3.	Image Analysis	3
	Shape analysis, texture analysis, pattern analysis	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Object detection in biomedical images of different nature	8
2.	Implementing shape analysis techniques	2
3.	Implement texture analysis techniques	2
4.	Implement pattern analysis techniques	2

Course Outcomes:

At the end of the course, students will be able to:	
1.	Object and pattern recognition in different types of biomedical images
2.	Perform analysis over shape, texture and pattern in biomedical images

Bibliography:

Sr.	$oldsymbol{V}$	Year of
No.	Book Detail	Publication

1.	Arnulf Oppelt, "Imaging Systems for Medical Diagnosis", 2 nd Edition, Siemens	2006
2.	Albert Macouski, "Medical Imaging systems", Pearson	1983
3.	John Semmlow, "Biosignal& Medical Image Processing", 3 rd Edition, CRC Press	2014
4.	http://people.ucalgary.ca/~ranga	

Available MOOCS:

1. https://www.coursera.org/learn/image-processing

Course Name	:	ADVANCED PROGRAMMING IN PYTHON, R, WEKA
Course Code	:	CSM5403
Credits	:	1
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:	
1.	To be proficient in advanced programming and scripting packages. Inculcate the abilities to implement real world problems.
2.	To build data analysis and visualization abilities in order to effectively bring out the results.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Beyond the Basics: Loops, String Formatting, Modules, Libraries,	2
	Packages, Reading and writing from files.	
	Data Analysis: Using the following packing Pandas, Numpy, Scipy	
	Data Visualization: Matplotlib	
2.	Basics of R Programming: Vectors, Matrices, Dataframe, Getting help	2
	and loading packages, Control Structures, Loop Functions and	
	Debugging.	
	Data Analysis with R: Summary statistics, Graphics in R, Probability and Distribution, Data entry and exporting data,	
3.	WEKA: Classification, Prediction, Rule Mining on Real world Applications using WEKA	2

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Hands-on on python libraries like tensor flow, Keras, etc	6
2.	Data analysis with R	4
3.	Implementation of various machine learning algorithms on different	4
	datasets like: UCI machine learning and Kaggle Datasets.	

A	At the end of the course, students will be able to:			
	1. Clear Understanding about the concepts of programming and scripting packages			
	2. Able to implement and automate the real world problems			
	3.	Abilities to interpret, analyze and visualize the results effectively.		

Sr. No.	Book Detail	Year of Publication
1.	"Introduction to Programming in Python: An Interdisciplinary Approach", 1e (English, Paperback, Sedgewick)	2015
2.	"Data Analysis with R": Tony Fischetti	2015
3.	"Data Mining with WEKA": University of Waikato	2011

- 1. https://www.futurelearn.com/courses/advanced-data-mining-with-weka
- $2.\ https://www.analyticsvidhya.com/blog/2016/01/top-certification-courses-sas-r-python-machine-learning-big-data-spark-2015-16/$

Course Name	:	Bioinformatics
Course Code	:	CSM5404
Credits	:	1.5
LTP	:	300
Segment	:	4-6

Course Objectives:

The main objectives of this course are:

1. To learn different types of biomedical images, object detection in biomedical images and perform analysis on shape, texture and pattern

Course Contents:

Sr.			
No.		Lectures	
1.	Basic Molecular Biology	6	
	Cell Structure and Function: Cell components. Different types of cell.		
	Chromosome structure and organisation. Cell division.		
	The Hereditary Material: DNA structure, replication and protein		
	synthesis. Structure and roles of RNA. Genetic code. Mechanism of		
	protein synthesis: transcription and translation. Mutation.		
	Recombinant DNA Technology: Restriction enzymes. Hybridisation		
	techniques. Gene cloning. Polymerase chain reaction.		
	Genomics and Structural Genomics: Genes, genomes, mapping and DNA		
	sequencing		
2.	Gene Prediction: Methods for analysing genomic DNA to identify genes	5	
	using neural networks and HMMs.		
	Detecting Distant Homology: Methods for inferring remote relationships		
	between genes and proteins using dynamic programming, Hidden		
	Markov Model (HMMs)		
	, hierarchical clustering.		
3.	Protein Structure Prediction: Methods for predicting the secondary and	10	
	tertiary structure of proteins using neural networks, SVMs, genetic		
	algorithms and stochastic global optimization.		
	Transcriptomics: Methods for analysing gene expression and microarray		
	data using clustering and SVMs.		
	Drug Discovery Informatics: Approaches to drug discovery using		
	bioinformatics techniques		

At the	At the end of the course, students will be able to:			
1.	1. Understand the advantages and disadvantages of different machine learning			
	techniques in bioinformatics			
2.	2. Evaluate the relative merits of different approaches by correct benchmarking			
	techniques			
3.	Use theoretical approaches to model and analyse complex biological systems			

Sr. No.	Book Detail Yes	
1.	Jeremy M Berg et al., "Biochemistry", 8 th Edition, WH Freeman and co.	2015
2.	Minoru Kanehesa, "Post-genome Informatics", Oxford University Press UK	2000
3.	C.A. Orengo et al., "Bioinformatics- Genes, Proteins and Computers" BIOS Scientific Publishers	2003
4.	J.D. Murray, "Mathematical Biology", Springer	1993

Available MOOCS:

1. https://www.coursera.org/specializations/bioinformatics

Course Name	:	Architecture of Distributed Cloud Applications
Course Code	:	CSM5405
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Course Objectives:

The main objectives of this course are:

1. To learn the benefits of distributed cloud applications with an emphasis on maintaining high-availability and scalability in a cost-effective way while also dealing with inevitable hardware and software failures.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Distributed Cloud Applications - Distributed Cloud Application	3
	Fundamentals, Microservices, Containers, embracing failure,	
	orchestrators, when to split a monolith into microservices, 12-factor	
	services, and when and how to use Containers.	
2.	Networking Communication - Networking Communication, Service	2
	APIs, Fault-Tolerant Network Communication	
3.	Messaging Communication - messaging with queues and fault-tolerant	2
	message processing.	
4.	Upgrading, and Configuration - Versioning Service Code, Shutting Down	2
	and Reconfiguring Services	
5.	Leader Election – need of leader, using leader election and role of lock	2
	for leader election	
6.	Storage Services - Introduction to Data Storage Services, Object Storage	3
	Services, Database Storage Services, Data Consistency, Versioning Data	
	Schemas, Backup, Restore and Disaster recovery	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Develop a cloud application capable of performing multi-threading.	3
2.	Develop a cloud application using Socket Programming.	3
3.	Develop a cloud application using Remote Method Invocation (RMI)	3
4.	Develop a cloud application capable of providing Web Services.	3

At the end of the course, students will be able to:			
1.	1. understand the basic concepts, various pros and cons of specific technologies, and the		
	resilient patterns that are heavily used by distributed cloud applications. This		
	knowledge will help a student to easily build cost-efficient and fault-tolerant systems.		

Sr. No.	Book Detail	Year of Publication
1.	Architecting the Cloud: Design Decisions for Cloud Computing Service Models By Michael J. Kavis, Wiley	2014
2.	Architecting for Scale: High Availability for Your Growing Applications By Lee Atchison, O,Reilly.	2016
3.	Cloud Architecture Patterns By Bill Wilder, O, Reilly	2012
4.	Web Services and SOA: Principles and Technology by M.P. Papazoglou, 2nd Edition, Prentice-Hall.	2013
5.	Distributed Systems: Concepts and Design by G. Coulouris, 5th ed., Addison- Wesley	2011

Available MOOCS:

 $1.\ https://www.edx.org/course/architecting-distributed-cloud-applications-0$

Course Name	:	Information Warfare
Course Code	:	CSM5406
Credits	:	1.5
LTP	:	300
Segment	:	4-6

Course Objectives:

The n	The main objectives of this course are:			
1.	To understand how the internet functions from a technical and governance perspective.			
2.	To identify issues arising with respect to data capture in the context of online			
	technology and recognise concepts of privacy in the online context.			

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview:	3
	How internet works, ethical Hacking and Leaking, Surveillance and	
	National Security, international legal framework for the conduct of	
	electronic/cyber surveillance.	
2.	Cyber-attacks:	6
	Cyber-attack strategy, traditional and non-traditional points of attack, 43	
	current cyber-attack vectors, cyber-attack process, tools and techniques	
	supporting the attack process, modular design of cyber weapons, sources	
	of cyber-attack code for reuse and cloaking	
3.	Countermeasures for cyber-attacks:	5
	profiling and vulnerability announcement monitoring, Social profiling of	
	targets in support of social engineering, disinformation and misdirection	
	in cyber-attack code, counter cyber forensics in cyber-attack code	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project related to Implementation of ethical hacking techniques.	4
2.	Project related to simulation of cyber-attacks.	5
3.	Project related to simulation of cyber-attack counter measures.	5

At th	At the end of the course, students will be able to:		
	1. Understand the nature and context of cyber operations and cyber-attacks.		
		Identify the actions of whistleblowers and whistleblowing platforms.	
3	3. Appreciate the legal and ethical context of hacking.		
4	4.	Understand the nature and context of cyber operations and cyber-attacks.	

Sr. No.	Book Detail	Year of Publication
1.	Richard A. Clarke, Robert Knake, "Cyber War: The Next Threat to	2012
	National Security and What to Do About It", Ecco	
2.	Peter W. Singer, Allan Friedman: "Cybersecurity and Cyberwar: What	2014
	Everyone Needs to Know"	

Available MOOCS:

1. https://www.edx.org/course/cyberwar-surveillance-security-adelaidex-cyber101x-0

Course Name	:	Game Theory
Course Code	:	CSM5407
Credits	:	1.5
LTP	:	300
Segment	:	4-6

Course Objectives:

The main objectives of this course are:

1. To apply game-theoretic analysis, both formally and intuitively, to negotiation and bargaining situations.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction and Overview	3
	Introduction, overview, uses of game theory, some applications and	
	examples, and formal definitions of: the normal form, payoffs, strategies,	
	pure strategy Nash equilibrium, dominant strategies	
2.	Mixed-Strategy Nash Equilibrium	2
	pure and mixed strategy Nash equilibria	
3.	Alternate Solution Concepts	3
	Iterative removal of strictly dominated strategies, minimax strategies and	
	the minimax theorem for zero-sum game, correlated equilibria	
4.	Extensive-Form Games	4
	Perfect information games: trees, players assigned to nodes, payoffs,	
	backward Induction, subgame perfect equilibrium, introduction to	
	imperfect-information games, mixed versus behavioral strategies.	
5.	Repeated Games	3
	Repeated prisoners dilemma, finite and infinite repeated games, limited-	
	average versus future-discounted reward, folk theorems, stochastic games	
	and learning.	
6.	Bayesian Games	3
	General definitions, ex ante/interim Bayesian Nash equilibrium.	
7.	Coalitional Games	3
	Transferable utility cooperative games, Shapley value, Core, applications.	

At the e	At the end of the course, students will be able to:		
1.	Model competitive real world phenomena using concepts from game theory.		
2.	Possess a set of intermediate level game-theoretic skills which can be applied in real world contexts.		
3.	Review and critically assess literature which deals with game theory and related materials.		
4.	Recommend and prescribe which strategies to implement		

Sr. No.	Book Detail	Year of Publication
1.	Gibbons, R., Game Theory for Applied Economists, Princeton University Press	1992
2.	Dixit, A. and B. Nalebuff, The Art of Strategy, WW Norton	2008
3.	Dixit, A. and B. Nalebuff, Thinking Strategically, WW Norton	1991
4.	Salim Bitam, Abdelhamid Mellouk, "Bio-Inspired Routing Protocols for Vehicular Ad Hoc Networks", Wiley.	2014

- 1. http://nptel.ac.in/courses/110104063/
- $2.\ https://www.coursera.org/learn/game-theory-introduction$

Course Name	:	Approximation Algorithms
Course Code	:	CSM5408
Credits	:	1.5
LTP	:	300
Segment	:	4-6

Course Objectives:

The r	The main objectives of this course are:		
1.	To learn and design polynomial time approximation algorithms for NP-Hard problems		
	using various techniques.		

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Introduction to approximation problems, NP-hard problems, need of	3
	approximation algorithms, bounding the optimum	
	Vertex cover problem, Set cover problem, 0/1 knapsack problem	
2.	Steiner Tree, Travelling Salesman Problem, Max flow-min cut problems	4
3.	Approximation Scheme, Fully Polynomial-Time Approximation Scheme	4
	(FPTAS), Polynomial-Time Approximation Scheme (PTAS)	
	Knapsack, Multiprocessor Scheduling	
4.	Linear Programming Techniques	4
5.	Rounding Techniques	3
6.	Primal-dual Technique	3

Course Outcomes:

At the end of the course, students will be able to:		
1.	Need and design of approximation algorithms using various techniques	
2.	Approach and design approximation algorithm for problems not known	

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Vijay V Vazirani, "Approximation Algorithms", Springer India	2002
2.	Jon Kleinberg, Eva Tardos, "Algorithm Design", Pearson India, 1 st Edition	2014

- **1.** https://www.coursera.org/learn/approximation-algorithms-part-1
- **2.** http://pages.cs.wisc.edu/~shuchi/courses/880-S07/

Course Name	:	High Performance Computing
Course Code	:	CSM5409
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Course Objectives:

The main objectives of this course are:		
1.	To understand various activities that happen during program execution, and how they are managed by the hardware (architectural features) and system software (operating systems, run-time systems)	
2.	To understand organization of parallel systems.	

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Overview:	3
	Programming languages and programming-language extensions for High	
	Performance Computing (HPC), Compiler options	
2.	Optimization:	4
	optimizations for modern single-core and multi-core processors, program	
	profiling, Execution profiling, timing techniques, and benchmarking for	
	modern single-core and multi-core processors, Hardware Architecture	
3.	Parallel System organization:	7
	Parallelization strategies, task parallelism, data parallelism, and work	
	sharing techniques	
	Introduction to message passing and Message Passing Interface (MPI)	
	programming, Problem decomposition, graph partitioning, and load	
	balancing, Introduction to shared memory and OpenMP programming.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project related to implantation of Program Profiling.	4
2.	Project related to Parallelization techniques.	5
3.	Project related to message passing using MPI programing.	5

At the	At the end of the course, students will be able to:		
1.	Explain the fundamental concepts of High performance computing.		
2.	Understand that more advanced use of software and parallel hardware is required to		
	further speed up processing of programs.		
3.	write code that is highly optimized for modern multi-core processors and clusters		
	using modern software development tools, performance profilers, specialized		
	algorithms, parallelization strategies		

4. Understand to how to apply different recycling techniques to reduce waste production and pollution.

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	K.R. Wadleigh and I.L. Crawford: Software Optimization for High	2000
	Performance Computing: Creating Faster Applications	
2.	B. Wilkinson and M. Allen, Prentice Hall: "Parallel Programming:	2004
	Techniques and Applications using Networked Workstations and	
	Parallel Computers" (2nd ed.)	
3.	G. Karniadakis and R. Kirby II, "Parallel Scientific Computing in C++	2003
	and MPI" by, Cambridge University Press.	

- 1. https://www.coursera.org/courses?query=high%20performance%20computing
- **2.** http://nptel.ac.in/courses/106108055/

OPEN ELECTIVE

Course Name	:	Data Science
Course Code	:	CSO5001
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28 Total No. of Lab hrs. 28

Course Objectives:

The main objectives of this course are:

1. To provide students with a foundation to: Apply game-theoretic analysis, both formally and intuitively, to negotiation and bargaining situations.

Course Contents:

Sr.	Course contents	No. of
No.	Translation A. D. A. C. S	Lectures
1.	Introduction to Data Science:	2
	What is data science, relation to data mining, machine learning, big data	
	and statistics, Motivating examples	
2.	Getting To Know Your Data:	2
	From data to features- Interactive group discussion, Representing	
	problems with matrices, Representing problem with relations	
	Computing simple statistics- Means, variances, standard deviations,	
	weighted averaging, modes, quartiles	
	Simple visualizations-Histograms, Boxplots, Scatterplots, Time series,	
	Spatial data	
3.	Overview of Tasks & Techniques: Prediction:	2
	The prediction task-Definition, Examples, Format of input / output data	
	Prediction algorithms- Decision trees, Rule learners, Linear/logistic	
	regression, Nearest neighbour learning. Support vector machines Properties of prediction algorithms and practical exercises, Combining	
	classifiers	
4.	Evaluation and Methodology of Data Science:	2
4.	Evaluation and Methodology of Data Science.	2
	Experimental setup- Training, tuning, test data, Holdout method, cross-	
	validation, bootstrap method	
	Measuring performance of a model- Accuracy, ROC curves, precision-	
	recall curves, Loss functions for regression Interpretation of results-	
	Confidence interval for accuracy, Hypothesis tests for comparing models,	
	algorithms	
5.	Data Engineering:	2
	Attribute selection- Filter methods, Wrapper methods	
	Data discretization- Unsupervised discretization, Supervised	
	discretization	
	Data transformations- PCA and variants	
6.	Overview of Tasks & Techniques: Probabilistic Models:	2
	Introduction- Probabilities, Rule of Bayes and Conditional Independence	
	Naive Bayes- Application to spam filtering	
	1 - ····	ı

	Bayesian Networks- Graphical representation, Independence and correlation Temporal models- Markov Chains, Hidden Markov Models	
7.	Overview of Tasks & Techniques: Exploratory Data Mining:	2
	Introduction to Exploratory Data Mining Association discovery- What is association discovery?, What are the challenges?, In detail: Apriori Clustering- What is clustering?, What are the challenges?, In detail: agglomerative clustering	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Case Studies in Data Science: Eve, the Pharmaceutical Robot Scientist:	10
	Data Science for Drug Discovery	
2.	Case Studies in Data Science: Data science for sports analytics	10
3.	Case Studies in Data Science: Data science for sensor data (Introduction to	8
	challenge)	

Course Outcomes:

At the e	At the end of the course, students will be able to:	
1.	1. Create competitive advantage from both structured and unstructured data	
2.	2. Predict outcomes with supervised machine learning techniques.	
3. Unearth patterns in customer behavior with unsupervised techniques.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1	Joel Grus, Data Science from Scratch: First Principles with Python,	
1.	O'Reilly Media	
2.	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning, Springer Texts in Statistics	
۷.	Introduction to Statistical Learning, Springer Texts in Statistics	
3.	I. Witten, E. Frank, M. Hall. Data Mining: Practical Machine Learning	
3.	Tools and Techniques (3rd Edition), Morgan Kaufmann	

- **1.** https://www.coursera.org/browse/data-science?languages=en
- 2. https://www.edx.org/learn/data-science

Course Name	:	Soft Computing
Course Code	:	CSO5002
Credits	:	3
LTP	:	202
Segment	:	1-6

Total No. Lectures: 28 Total No. of Lab hrs. 28

Course Objectives:

The main objectives of this course are:		
1.	1. To understand and analyse various soft computing techniques for a given problem.	
2.	2. To get familiar with latest trends for problem solving in soft computing domain.	

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to Soft Computing and MATLAB	4
	Evolution of Computing: Soft Computing Constituents	
	Introduction to MATLAB, Arrays and array operations, Functions and	
	Files	
2.	Fuzzy Logic	5
	Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership	
	Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems,	
	Fuzzy Expert Systems, Fuzzy Decision Making	
3.	Neural Networks	8
	Machine Learning Using Neural Network, Adaptive Networks, Feed	
	forward Networks, Supervised Learning Neural Networks, Radial Basis	
	Function Networks: Reinforcement Learning, Unsupervised Learning	
	Neural Networks, Adaptive Resonance architectures, Advances in Neural	
	networks	
4.	Genetic Algorithms	6
	Introduction to Genetic Algorithms (GA), Applications of GA in Machine	
	Learning: Machine Learning Approach to Knowledge Acquisition	
5.	Recent Trends	5
	Recent Trends in deep learning, various classifiers, neural networks and	
	genetic algorithm.	
	Implementation of recently proposed soft computing techniques	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Setting up MATLAB	2
2.	Experiments with neural network toolbox	4
3.	Experiments with fuzzy logic toolbox	4
4.	Implementing fuzzy logic	6
5.	Implementing artificial neural network	6

6.	Implementing genetic algorithms	6
----	---------------------------------	---

Course Outcomes:

At the	end of the course, students will be able to:
1.	Identify and describe soft computing techniques and their roles in building intelligent
	machines
2.	Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering
	problems
3.	Apply genetic algorithms to combinatorial optimization problems
4.	Evaluate and compare solutions by various soft computing approaches for a given
	problem

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence", Prentice Hall of India	2009
2.	S. N. Deepa, S. N. Shivanandam, "Principles of Soft Computing", Wiley India, 2 nd Edition	2011
3.	George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall of India	2009

- 1. https://www.class-central.com/tag/soft%20computing
- **2.** https://swayam.gov.in/course/4574-introduction-to-soft-computing

Course Name	:	Data Structures
Course Code	:	CSO5003
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Course Objectives:

The main objectives of this course are:

1. To study efficient algorithms for a number of fundamental problems, learn techniques for designing algorithms using appropriate data structures, prove correctness and analyze running times of algorithms.

Course Contents:

Sr. No.	Course contents	No. of Lectures
1.	Elementary Data Structures - Stacks and queues, linked list,	2
	implementing pointers and objects, Representing rooted trees	
2.	Dictionaries: Sets, Dictionaries, Hash Tables, Open Hashing,	3
	Closed Hashing (Rehashing Methods), Hashing Functions (Division	
	Method, Multiplication Method, Universal Hashing), Skip lists, Analysis	
	of Skip lists.	
3.	Amortized Analysis - Aggregate analysis, The accounting method, The	3
	potential method, Dynamic tables	
4.	Introduction to Binary search trees, B-Trees, Fibonacci trees, Red-black	4
	trees, Mergeable heaps	
5.	Priority Queues: Binary Heaps - Implementation of insert and delete	2
	min, creating heap; Binomial Heaps and Operations.	
6.	Data Structures for Disjoint Sets - Disjoint-set operations, Linked-list	2
	representation of disjoint sets, Disjoint-set forests	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Implement an efficient algorithm for matrix multiplication and perform its complexity analysis.	2
2.	Design an application capable of implement a dictionary using Binary Search Trees.	3
3.	Design an application capable of implement a dictionary using Red Black Trees.	3
4.	Design a small project which utilizes binomial heaps.	3
5.	Design an application for text searching using a suitable data-structure.	3

Course Outcomes:

At the e	At the end of the course, students will be able to:	
1.	To impart the basic concepts of data structures and algorithms	

2.	Be able to understand and apply amortised analysis on data structures, including
	binary search trees, mergeable heaps, and disjoint sets.
3.	Understand the implementation and complexity analysis of fundamental algorithms.

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Thomas Cormen, Charles Leiserson, Ronald Rivest and Clifford Stein, Introduction to Algorithms, MIT Press (third edition).	2009
2.	S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani, Algorithms, Mcgraw-Hill.	2006
3.	J. Kleinberg and E. Tardos, Algorithm Design, Addison-Wesley, 2006.	2006
4.	Richard F. Gilberg& Behrouz A. Forouzan Data Structures A Psedocode Approach with C, second edition, CENGAGE Learning.	2004
5.	Reema Thareja, Data Structures using C, Oxford University press.	2014
6.	Jean-Paul Tremblay, P. G. Sorenson, Introduction to Data Structure and its Applications, Tata Mc-Graw Hill.	2001
7.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press	2009

- $\textbf{1.} \ https://www.edx.org/course/introduction-data-structures-adelaidex-data 101x$
- $\textbf{2.} \ \underline{\text{https://www.coursera.org/specializations/data-structures-algorithms}}$

Course Name	:	Digital Image Processing
Course Code	:	CSO5004
Credits	:	1.5
LTP	:	202
Segment	:	1-3

Total No. of Lab hrs. 14

Course Objectives:

The n	The main objectives of this course are:				
1.	To learn digital image fundamentals and exposed to simple image processing				
	techniques.				

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction – Origin, Steps in Digital Image Processing, Components,	2
	Image Sensing and Acquisition, Image Sampling and Quantization,	
	Relationships between pixels, color models, classification of images and	
	feature extraction.	
2.	Spatial Domain: Gray level transformations, Histogram processing,	3
	Basics of Spatial Filtering, Smoothing and Sharpening Spatial Filtering,	
	Frequency Domain: Introduction to Fourier Transform	
3.	Image Restoration and Segmentation: Noise models, Mean Filters,	4
	Order Statistics, Adaptive filters, Band reject Filters, Band pass Filters,	
	Notch Filters, Optimum Notch Filtering, Inverse Filtering, Wiener	
	filtering, Segmentation: Detection of Discontinuities, Edge Linking and	
	Boundary detection, Region based segmentation, Morphological	
	processing, erosion and dilation.	
4.	Wavelets and Image Compression: Introduction to Wavelets,	3
	Compression: Fundamentals, Image Compression models, Error Free	
	Compression, Variable Length Coding, Bit-Plane Coding, Lossless	
	Predictive Coding, Lossy Compression, Lossy Predictive Coding,	
	Compression Standards.	
5.	Image Representation: Boundary representation, Boundary description,	2
	Regional Descriptors	

Lab Work:

Sr.	Lab contents	No. of
No.		Hours
1.	Using MATLAB (or equivalent software), perform various arithmetic	2
	operations on two images.	
2.	Using MATLAB (or equivalent software), represent image as a histogram,	3
	segment its colors and perform histogram equalization	
3.	Using MATLAB (or equivalent software), detect the edge of an image	2
	operators.	

4.	Using MATLAB (or equivalent software), Implement various spatial	2
	image enhancement functions on a bitmap image –Mirroring (Inversion)	
5.	Implement a function in MATLAB for image morphology that analyze the	2
	form and shape detail of image structures	
6.	Implement a function in MATLAB for Image Restoration and	3
	Segmentation.	

Course Outcomes:

At the	At the end of the course, students will be able to:		
1.	Develop an overview of the field of image processing.		
2.	Understand the fundamental algorithms and how to implement them.		
3.	Represent features of images.		
4.	Gain experience in applying image processing algorithms to real problems.		

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education.	2010
2.	Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd.	2011
3.	Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd.	2011
4.	Willliam K Pratt, "Digital Image Processing", John Willey.	2007
5.	Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd.	2011

- **1.** https://www.coursera.org/courses?languages=en&query=digital+image+processing
- **2.** https://online.stanford.edu/courses/ee368-digital-image-processing

Course Name	:	Business Analytics
Course Code	:	CSO5006
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The main	objectives	of this	course are:
----------	------------	---------	-------------

1. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Overview of Business Analytics: Introduction to Analytics, Different	4
	types of data; Data summarization methods;	
2.	Organization/sources of data; Importance of data quality; Dealing with	5
	missing or incomplete data; Data Classification	
3.	Introduction to Decision Modelling: Decision Making under	5
	Uncertainty, Introduction to Operations Research (OR), linear	
	programming (LP), formulating decision problems using linear	
	programming, interpreting the results and sensitivity analysis.	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project for Optimizing with multiple objectives / portfolio analytics	3
2.	Project for Optimizing complex decisions / salesforce analytics	3
3.	Project to study Predictions and skill versus luck / sports analytics.	4
4.	Project based on Decision-support systems -from concept to deployment- /	4
	supply chain analytics.	

Course Outcomes:

At the e	At the end of the course, students will be able to:		
5.	Understand the role of business analytics within an organization.		
6.	Analyse data using statistical and data mining techniques and understand		
	relationships between the underlying business processes of an organization.		
7.	Use decision-making tools/Operations Research techniques.		
8.	Use advanced analytical tools to analyse complex problems under uncertainty		

Bibliography:

Sr.	Pauls Datail	Year of
No.	Book Detail	Publication

1	Business Analytics: Methods, Models, and Decisions by James R.	2014
1.	Evans 2014, pearson	
2.	Business Analytics 1st Edition by Raj Publisher: Cengage Learning	2014
2	Data Smart: Using Data Science to Transform Information into Insight	2013
3.	2013 by John W. Foreman, wiley	

- 1. https://www.coursera.org/specializations/business-analytics
- **2.** https://www.edx.org/micromasters/business-analytics

Course Name	:	Cloud Computing
Course Code	:	CSO5005
Credits	:	1.5
LTP	:	202
Segment	:	4-6

Total No. of Lab hrs. 14

Course Objectives:

The main objectives of this course are:

1. To learn the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and Challenges for each Cloud type and service delivery model.

Course Contents:

Sr.	Course contents	No. of
No.		Lectures
1.	Introduction to Cloud Computing: Online Social Networks and	5
	Applications, Cloud introduction and overview, Different clouds,	
	Risks, Novel applications of cloud computing	
2.	Cloud Computing Architecture: Requirements, Introduction Cloud	5
	computing architecture, On Demand Computing Virtualization at the	
	infrastructure level, Security in Cloud computing environments,	
	CPU Virtualization, A discussion on Hypervisors Storage	
	Virtualization Cloud Computing Defined, The Serial Peripheral	
	Interface(SPI) Framework for Cloud Computing, The Traditional	
	Software Model, The Cloud Services Delivery Model	
3.	Cloud Deployment Models: Key Drivers to Adopting the Cloud, The	4
	Impact of Cloud Computing on Users, Governance in the Cloud, Barriers	
	to Cloud Computing Adoption in the Enterprise	

Lab Work:

Sr. No.	Lab contents	No. of Hours
1.	Project to Understand basic working of cloud	3
2.	Project to divide online resources of cloud virtually as different devices	3
3.	Project for the service delivery model of cloud	4
4.	A project to understand impact of cloud on resources and users	4

Course Outcomes:

At the end of the course, students will be able to:		
1.	Identify security aspects of each cloud model	
2.	Develop a risk-management strategy for moving to the Cloud	
3.	Implement a public cloud instance using a public cloud service provider	
4.	Apply trust-based security model to different layer	

5. Identify security aspects of each cloud model

Bibliography:

Sr. No.	Book Detail	Year of Publication
1.	Cloud Computing Explained: Implementation Handbook for	2009
	Enterprises, John Rhoton, Publication Date: November 2, 2009	
2.	Cloud Security and Privacy: An Enterprise Perspective on Risks	2009
	and Compliance (Theory in Practice), Tim Mather, ISBN-10:	
	0596802765, O'Reilly Media, September 2009	
3.	Cloud Computing: Principles and Paradigms by RajkumarBuyya,	2012
	James Broberg, Andrzej M. Goscinski, Wiley 2012	
4.	Cloud Computing Bible By Barrie Sosinsky, wiley 2011	2011

- 1. https://www.coursera.org/courses?query=cloud%20computing
- **2.** https://www.edx.org/learn/cloud-computing