

ECE Department UG Curriculum (2020-21 Session Onwards)

A. <u>SEMESTER WISE UG SCHEME TO BE IMPLEMENTED W.E.F.</u> **2020-21 SESSION**

SEMESTER-I					
S.No.		Credits			
1	Orientation (including	2			
	Introduction to Discipline	2			
	course-1 credit 14 hours)				
2	BSC-I (Mathematics)	4			
3	BSC-II/ BSC-IV (Physics/ Chemistry)	4			
4	GSC-I & GSC-II/ ESC-I	4			
5	HSM-I/ ESC-II	3			
6	ESC-III/ ESC-IV	3 / 2			
	TOTAL	20 / 19			
	SEMESTER-III				
S.No.		Credits			
1	ESC-VII/ HSM-II	3			
2	Deptt Core Courses (DCC)	12			
3	OE-I	4			
4	Industrial Tour	2			
	TOTAL	21			

SEMESTER-V

Deptt Core Courses (DCC)

S.No.

1

2 3

4

DEC-I

DEC-II

TOTAL

Minor Project

S.No.

1

2

3

4

S.No.		Credits
1	Internship Training (Optional)	
	Students opting for course work will do	12
	Deptt. Elective (4 credits), Open	
	Elective (4 credits) and Project Work (4	
	credits)	
	TOTAL	12

SEMESTER-VII				
S.No.		Credits		
1	HSM-III	3		
2	DEC-III	4		
3	DEC-IV	4		
4	OE-III	4		
5	OE-IV	4		
6	Major Project-I	2		
	TOTAL	21		

ABBREVIATIONS	
Basic Science Course	BSC
Engineering Science Course	ESC
General Science Course	GSC
Humanities, Social Sciences & Mgmt.	HSM

S.No.		Credits
1	HSM-IV	3
2	DEC-V	4
3	OE-V	4
4	OE-VI	4
5	Discipline	2
6	Proficiency-II	2
7	Major Project-II	4
	TOTAL	23

ABBREVIATIONS			
Department Core Course	DCC		
Department Elective Course	DEC		
Open Elective Course	OE		

ESC-IV/ ESC-III 5 6 ESC-V/ ESC-VI

Credits

4

12

4

3

23

TOTAL

SEMESTER-IV				
S.No.		Credits		
1	HSM-II/ ESC-VII	3		
2	Deptt Core Courses (DCC)	12		
3	OE-II	4		
4	Proficiency-I	2		
	TOTAL	21		

SEMESTER-II

BSC-IV/ BSC-II (Chemistry/ Physics)

BSC-III (Mathematics)

ESC-I/ GSC-I & GSC-II

ESC-II/ HSM-I

Credits

4

4

4

3

2/3

2

19/20

Students opting for course work will do			
	Deptt. Elective (4 credits), Open		
	Elective (4 credits) and Project Work (4		
	credits)		
	TOTAL	12	
	SEMESTER-VIII		
S.No.		Credit	
1	HSM-IV	3	
2	DEC-V	4	
3	OE-V	4	

Total Credits = 160 without Honours

Total Credits = 160 + 16 with Honours

Note: Minor Specialization will be given to a student who earns 16 credits from the basket of Open Elective courses offered by any one department (outside the parent department). Major Specialization will be given to a student who earns 16 credits in any one domain of Department Elective courses offered by parent department. To get Honours, the student will have to complete additional 16 credits of discipline Electives.

ESC-I	Introduction to Computing			
ESC-II	Engineering Drawing with CAD Software			
ESC-III	Introduction to Mechatronics			
ESC-IV	Introduction to Electronics & electrical Engineering			
ESC-V	Introduction to Manufacturing			
ESC-IV	Strength of Materials			
ESC-VII	Artificial Intelligence & Machine Learning			
ESC-VII and HSM-II (in 3 rd and 4 th semesters) are				
common to all branches.				

B. COURSES / CREDITS DISTRIBUTION

- I. Institute Core Courses (ICC) 37 Credits
 - a. Basic Science Courses (BSC) 16 Credits
 - b. Engineering Science Courses (ESC) 17 Credits
 - c. General Science Courses (GSC) 4 Credits
- II. Humanities, Communication and Management Elective Courses (HSSMEC) 12 Credits
- III. Departmental Core Courses (DCC)- 39 Credits Including 3 credits for Minor Project
- IV. Departmental Elective Courses (DEC) 20 Credits
- V. Institute Open Elective Courses 30 Credits
 - a. Open Elective Courses 24 Credits
 - b. Project (Compulsory Major Project) Interdisciplinary 6 Credits
- VI. Internship (Optional) / Course Work 12 Credits (Students Opting for course work will do department elective (4 credits), open elective (4 credits) and Project Work (4 Credits)
- VII. Non-Academic Courses (NAC) 10 Credits
- Total Credits (without Honours): 160 Honours: 16 Credits Total Credits (with Honours): 160 + 16 = 176
- Major Specialization:

Major Specialization will be given to a student who earns 16 credits (within 160 credits) in any one specialized domain of Department Elective Courses (DEC) offered by the ECE department.

• Minor Specialization:

Minor Specialization in ECE will be given to a student of outside the ECE department who earns 16 credits (within 160 credits) from the basket of Open Elective Courses offered by the ECE department as Minor Specialization Courses (MSC).

• Honours:

To get Honours in ECE, the student will have to complete additional 16 credits (over and above 160 credits) of Department Elective Courses (DEC) of ECE department.

I. List of Institute Core Courses (ICC) – 37 credits

- a. Basic Science Courses (BSC) 16 Credits
- b. Engineering Science Courses (ESC) 17 Credits
- c. General Science Courses (GSC) 4 Credits

Sr. No.	Course Code	Course Name	L	Т	P	Credits	Category	
Semester	Semester I							
1.	MA1101	Calculus and Ordinary Differential	3	1	0	4	BSC-I	
		Equations						
2.	CH1101	Applied Chemistry-I	3	0	2	4	BSC-IV	
Semester	II							
3.	PY1201	Electromagnetic Theory and	3	0	2	4	BSC-II	
		Quantum Physics						
4.	MA1201	Linear Algebra, vector Calculus,	3	1	0	4	BSC-III	
		and partial differential equations						
Total Credits					edits	16		

Basic Science Courses (BSC) – 16 Credits

Engineering Science Courses (ESC) – 17 Credits

Sr. No.	Course Code	Course Name	L	Т	P	Credits	Category	
Semester I								
1.	ES1101	Introduction to Computing*	3	0	2	4	ESC-I	
2.	ES1201	Engineering Drawing with CAD	2	0	2	3	ESC-II	
		Software						
3.	ES1301	Introduction to Mechatronics	2	0	2	3	ESC-III	
Semester	Semester II							
4.	ES1401	Introduction to Electronics &	2	0	0	2	ESC-IV	
		Electrical Engineering						
5.	ES1501	Introduction to Manufacturing	2	0	0	2	ESC-V	
Semester III								
6.	ES1701	Artificial Intelligence and	2	0	2	3	ESC-VII	
		Machine Learning*						
Total Credits				17				

*Common to All Branches

General Science Courses (GSC) – 4 Credits

Sr. No.	Course Code	Course Name	L	Τ	Р	Credits	Category
Semester	Semester II						
1.	GS1101	Introduction to Environmental	2	0	0	2	GSC I
	&	Sciences – I					&
	GS1201	Introduction to Environmental	1	0	2	2	GSC II
		Sciences - II					
Total Credits					4		

Sr. No.	Course Code	Course Name	L	Т	P	Credit	Category
						S	
Semester I	[
1.	HS1101	Communication Skills & Ethics	2	0	2	3	HSM-I
Semester I	V						
2.	HS2301 /	Basics of	2	1	0	3	HSM-II
	HS2302 /	Economics /	2	1	0		
	HS2303 /	French- Basic /	2	1	0		
	HS2304	General	2	1	0		
		Psychology /					
		Sociology					
Semester VII							
3.	HS2701 /	Anthropology /	2	1	0	3	HSM-III
	HS2702 /	Appreciation of	3	0	0		
	HS2703 /	Art / English	2	1	0		
	HS2704 /	Literature /	3	0	0		
	HS2705 /	History /	3	0	0		
	HS2706 /	Introduction to Art	3	0	0		
	HS2707 /	History / Philosophy- an	2	1	0		
	HS2708	Introduction / Political	2	1	0		
		Science /					
		Public Administration					
Semester V	III						
4.	HS2801 /	Business Environment	2	1	0	3	HSM-IV
		and Business Laws /					
	HS2802 /	Entrepreneurship and	2	1	0		
		Project Management /					
	HS2803	Financial Management	2	1	0		
			Tota	al Cre	edits	12	

II. <u>List of HSM Courses – 12 Credits</u>

Semester Wise Courses Detail

SEMESTER-I					
S.NO.			CREDITS		
1	Orientation (including Introduction to Discipline course-1 credit 14 hours)				
2	BSC-I (Mathematics):	Math-I	4		
3	BSC-II/BSC-IV (Physics/Chemistry) :	Chem-I	4		
4	GSC-I & GSC-II/ESC-I :	ESC-I	4		
5	HSM-I/ESC-II :	ESC-II	3		
6	ESC-III/ESC-IV :	ESC-III	3		
	TOTAL		20		

SEMESTER-II					
S.NO.			CREDITS		
1	BSC-III(Mathematics) :	(Math-II) (Linear Algebra, vector calculus and partial differential equations)	4		
2	BSC-IV/BSC-II (Chemistry/Physics) :	BSC-II (Phy)	4		
3	ESC-I/GSC-I & GSC-II :	GSC-I & GSC-II	4		
4	ESC-II/HSM-I :	HSM-I	3		
5	ESC-IV/ESC-II :	ESC-IV (ES1401)	2		
6	ESC-V/ESC-VI :	ESC-V	2		
	TOTAL		19		

SEMESTER-III			
S.NO.		CREDITS	
1	ESC-VII/HSM-II	3	
2	Digital Logic Design (DCC)	4	
3	Electronic Devices and Circuits (DCC)	4	
4	Circuit Theory (DCC)	4	
5	OE-I	4	
6	Industrial Tour	2	
	TOTAL	21	

SEMESTER-IV			
S.NO.		CREDITS	
1	HSM-II/ ESC-VII	3	
2	Analog Electronics (DCC)	4	
3	Probability and Random Processes (DCC)	4	
4	Signals and Systems (DCC)	4	
5	OE-II	4	
6	Proficiency-I	2	
	TOTAL	21	

SEMESTER-V			
S.NO.		CREDITS	
1	DEC-I	4	
2	Analog and Digital Communication (DCC)	4	
3	Control Systems (DCC)	4	
4	Microwave Engineering (DCC)	4	
5	DEC-II	4	
6	Minor Project	3	
	TOTAL	23	

SEMESTER-VI			
S.NO.		CREDITS	
1	Internship Training(Optional)		
	Students opting for course work will do Dept. Elective (4 Credits), Open Elective (4 credits) and Project Work (4 Credits)	12	
	TOTAL	12	

SEMESTER-VII			
S.NO.		CREDITS	
1	HSM III	3	
2	DEC-III	4	
3	DEC-IV	4	
4	OE-III	4	
5	OE-IV	4	
6	Major Project-I	2	
	TOTAL	21	

SEMESTER-VIII			
S.NO.		CREDITS	
1	HSM-IV	3	
2	DEC-V	4	
3	OE-V	4	
3	OE-VI	4	
4	Discipline	2	
5	Proficiency-II	2	
6	Major Project-II	4	
	TOTAL	23	

<u>Scheme for B.Tech. (ECE) – List of Departmental Core Courses</u>

COURSE NAME	L-T-P		
Semester-3	I		
Digital Logic Design (EC1231)	3-0-2		
Electronic Devices and Circuits (EC1232)	3-0-2		
Circuit Theory (EC1233)	3-1-0		
Semester-4			
Analog Electronics (EC1241)	3-0-2		
Probability and Random Processes (EC1242)	3-1-0		
Signals and Systems (EC1243)	3 -1-0		
Semester-5			
Analog and Digital Communication (EC1351)	3-0-2		
Control Systems (EC1352)	3-1-0		
Microwave Engineering (EC1353)	3-0-2		

CODE- EC:range:year:semester:course number

List of Dept. Elective Courses With Specialized

Domains (Credit: 20)

	Communication Engineering	VLSI Design	Embedded Systems
DEC 1/ DEC 2	Information Theory and Coding (3-1-0) (EC2211)	Electronics Devices Fabrication (3-0-2) (EC2231)	Microprocessor and Microcontroller (3-0-2) (EC2221)
	Computer Communication Networks (3-1-0) (EC2212)	HDL based System Design (3-0-2) (EC2232)	Industrial Automation (3- 1-0) (EC2222)
	Digital Image Processing (3-1- 0) (EC2213)	Power Electronics (3-1- 0)(DEC2) (EC2233)	Embedded System Design (3-0-2) (EC2223)
	Digital Signal Processing (3-0- 2) (DEC2) (EC2214)	Digital VLSI Design (3- 0-2)(DEC2) (EC2234)	IoT with ARDUINO and Raspberry Pi (3-02) (EC2224)
DEC 3/ DEC 4	Antenna and Wave Propagation (3-1-0) (EC2311)	PCB Circuit Design (3-0-2) (EC2331)	Neural Networks and Fuzzy System (3-1-0) (EC2321)
	Satellite Communication (3-1-0) (EC2312)	Foundations of VLSI CAD (3-1-0) (EC2332)	Computer Architecture (3-1-0) (EC2322)
	Optical Communication (3-0-2)(EC2313)	Analog VLSI Design (3-0-2) (EC2333)	Multimedia technology (3-1-0) (EC2323)
	Wireless Communication (3-0-2) (EC2314)	FPGA & ASICs (3-1-0) (EC2334)	Digital Image Processing (3-1-0) (EC2324)
DEC 5	Advanced digital communication (3-1-0) (EC2411)	Nanotechnology (3-1-0) (EC2431)	Advanced Sensing technology (3-1-0) (EC2421)
	Mobile and Cellular Communication(3-0-2) (EC2412)	MEMS & Microsystems (3-1-0) (EC2432)	Robotics (3-1-0) (EC2422)
	MIMO Wireless Communication (3-1-0) (EC2413)	Low Power VLSI Devices (3-1-0) (EC2433)	PLC Designing (3-1-0) (EC2423)
		Advanced VLSI Devices (3-1-0) (EC2434)	

 CODE-EC:range:year:pool(alphabetical):course number

List of Open Elective Courses (Credit: 20)

1	Communication Systems*(3-1-0) (EC6011/EC5001)
2	Digital Image Processing*\$ (3-1-0) (EC6012/EC5003)
3	Computer Networks (3-1-0) (EC6013)
4	Advanced Communication Systems (3-1-0) (EC6014)
5	Mobile and Cellular Communication (3-0-2) (EC6015)
6	Digital Signal Processing*\$ (3-1-0) (EC6106/EC5004)
7	Analog and Digital Electronics * (3-1-0) (EC6021/EC5002)
8	Introduction to Printed Circuit Board (3-0-2) (EC6022)
9	Electronic Measurements and Instrumentation (3-1-0) (EC6023)
10	MEMS and Microsystems (3-1-0) (EC6024)
11	Electronics Device Fabrication (3-0-2) (EC6025)
12	Nano Electronics Devices (3-0-2) (EC6026)
13	PLC designing (3-1-0) (EC6031)
14	ARDUINO Programming and Raspberry Pi (3-1-0) (EC6032)
15	Sensing Technology (3-1-0) (EC6033)
16	Multimedia Technology (3-1-0) (EC6034)
17	Microcontrollers and their Applications*# (3-1-0)
	(EC0033/EC3003)
18	Microprocessor and Microcontroller*# (3-1-0) (EC6036/EC5006)

Code- range:range:different_pool:course number

* Fixed for Minor Specialisation; \$/# : any one subject (code- range: range: range: course number)

Minor Specialization Courses (16 Credits)

Minor Specialization Courses (MSC)						
	<u>Course name</u>	L	Т	Р	Credits	
1.	Analog and Digital Electronics	3	1	0	4	
2.	Communication Systems	3	1	0	4	
3.	Digital Signal Processing/ Digital Image Processing	3	1	0	4	
4.	Microprocessor and Microcontroller/ Microcontroller and its applications	3	1	0	4	

Detailed syllabus of Dept. Core courses

Course Name	:	DIGITAL LOGIC DESIGN			
Course Code	:	EC1231			
Credits	:	4			
LTP	:	3-0-2			
Course Objective	es:				
At the end of this course, the student should be able to design and analyze various combinational and sequential logic circuits and compare various A/D and D/A Converters, Logic families and their characteristics.					

Total No. of Lectures –			
Lec	ture wise breakup	Number of Lectures	
1	DIGITAL FUNDAMENTALS	5	
	Binary Codes, Binary Logic, Complements, Theorems of Boolean algebra,		
	Sum of Products and Products of Sum forms, Boolean function		
	minimization, logic gates. Universal building blocks- NAND and NOR gates.		
2	COMBINATIONAL LOGIC	10	
	Half adder, full adder, Half subtractor, Full Subtractor, Parallel binary adder,		
	Combined adder subtractor, BCD adder, binary multiplier, magnitude		
	comparator, code converter, encoder decoder, multiplexer, demultiplexer,		
	parity detector and generator, three state gate Introduction to HDL-		
	Structural, Dataflow and Behavioral modeling, Combinational circuit design		
2	USING HDL	0	
3	Introduction Flip Flops Analysis of clocked sequential circuits Design of	9	
	synchronous sequential circuits. Mealy and Moore finite state machines		
	Counters. Shift Registers		
4	ASYNCHRONOUS SEQUENTIAL CIRCUITS	5	
	Analysis Procedure, Circuits with latches; Design Procedure, Reduction of		
	state and flow table; Race free state ASM assignment; Hazards; chart; Design		
_	examples	4	
3	ROM RAM (static and dynamic) PROMS PLA and PAI	4	
6	A/D AND D/A CONVERTERS	4	
U	Various types of A/D and D/A Converters. Performance Parameters	1	
	(Pasolution Accuracy atc.)		
	(Resolution, Accuracy etc.)		
7	LOGIC FAMILIES	5	
	Characteristics of logic families, RTL, TTL, ECL, CMOS logic families.		
List	of Experiments:	Number of Turns	
1	To Study the data sheets of various logic families	1	
3	To simulate and implement a logic function using logic gates.	1	
4	To simulate and implement Adder and Subtractor circuits.	1	
5	To simulate and implement code converters.	2	
6	To simulate and implement combinational circuits using Multiplexers.	1	
7	To simulate and implement Flip-flops using NAND and NOR Gates.	1	
ð	To study the operation of sources ICa		
ソ 10	To study the operation of counter ICs.	2	
10	To simulate and implement the synchronous sequential circuits.	2	
11	To simulate and implement an application based on digital circuits.	4	

Cour	se Outcomes:	
1	Design the combinational circuits using logic gates making use of various Booles	an laws and
	minimization techniques	
	inimization techniques.	
2	Design and analyze combinational circuits with MUX_DEMUX Encoder_Decode	r DI De etc
-	Design and analyze combinational circuits with WOA, DEWOA, Encoder, Decode	1,1 LD5 etc.
3	Design and analyze various sequential circuits	
	bosign and analyze various sequential enforms.	
4	Compare the different logic families, memories and A/D-D/A converters.	
Sugge	sted Books:	
G		Year of
Sr.	Name of Book/ Authors/ Publisher	Publication
NO.		/ Reprint
1	Digital Design by Morris Mano, PHI, 4th edition	2008
2	Digital principles and Applications, by Malvino Leach, TMH	2011
3	Digital System Principles and Applications, by R J Tocci (PHI)	2009
4	Modern Digital Electronics, by R P Jain, TMH	2006
5	Digital Integrated Electronics, by Taub Schilling, TMH	2004

:	ELECTRONIC DEVICES AND CIRCUITS
:	EC1232
:	4
:	3-0-2
	:

Total No. of Lectures – 42

At the end of this course, the student should be able to identify active and passive components and to solve simple electronic circuits. The student should also be able to explain construction, operation, characteristics and biasing of diodes, BJTs and FETs. The student should also be able to analyze the mathematical models of transistor amplifier circuits analyze the frequency response of amplifiers and describe the operation of power amplifiers.

Lecture wise breakup

No. of Lectures

1	Semiconductor physics	(6)
	Electron affinity, work function, quasi-states, fermi level, Equilibrium Carrier	
	concentration Temperature dependence on Carrier concentration Drift Diffusion	
	Recombination-generation	
2.	PN Junction diode and diode circuits	(8)
	Space charge at a junction, electrostatic analysis of junction at different bias	~ /
	conditions, band diagrams, Depletion and Diffusion Capacitances, Switching	
	Characteristics, and Breakdown Mechanisms, Rectifier circuits, Clippers, Clampers,	
	Special purpose diodes, Metal-Semiconductor Junctions: Schottky barrier, Rectifying	
	and Ohmic Contacts	
3	Bipolar Junction Transistors	(5)
	Transistor operation, Carrier Distribution, Transit Time, Transistor configurations,	
	characteristics of CB, CE and CC configuration, Transistor as an amplifier, Load line	
	and Operating point, Bias stability, various biasing circuits, Thermal Runaway,	
	Thermal stability	
4.	Metal Oxide Field Effect Transistors: Basic Operation, Ideal MOS Capacitor,	(8)
	Electrostatic analysis, Effects of real surfaces, Threshold Voltage, Body effect, C-V	
	and I-V Characteristics	
5.	Amplifiers	(8)
	Small-Signal Equivalent Circuits: FET/MOSFET; Biasing and Design of	
	FET/MOSFET (CS, CG, and CD) Amplifiers, Frequency Response of Amplifiers,	
	High Frequency Device Models, Gain bandwidth product	
6.	Other Semiconductor devices:	(7)
	Compound semiconductor based electronic, optoelectronic, and photonic devices and	
	integrated circuits, CCD and imaging devices	

ELECTRONIC DEVICE AND CIRCUITS (LAB)

List	No. of turns	
1.	To study electronic components and various testing and measuring equipment.	2
3.	To study the V-I characteristics of p-n junction diode and determine static resistance and dynamic resistance.	1
4.	To simulate and implement clipper and clamper circuits.	2
5.	To simulate and implement half wave and full wave rectifier.	1
6.	To study the characteristics of BJT in different configurations.	2
7.	To study the characteristics of MOSFET	1
8.	To simulate and verify the operation of BJT/MOSFET as an amplifier and draw the frequency response.	2

Course Outcomes:

At the end of this course, the student will be able to

- 1. Analyse simple electronic circuits based on the knowledge of devices such as diodes and transistors (BJT and FET) with special focus on designing amplifiers with discrete components
- 2. Design and analyse bias circuits for BJTs for the basic categories (CE, CC, CB)
- 3. Analyse the modelling of transistor and formulate the performance parameters of the amplifier.
- 4. Perform design of Amplifiers and frequency analysis based on BJTs using small signal model.
- 5. Demonstrate basic skills on using electronic devices simulation programs and on applying them in homework and laboratory exercises functioning effectively as a team.

Text Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
2	D. A. Neamen and D. Biswas, <i>Semiconductor Physics and Devices</i> , 4th edition. Tata McGraw-Hill, 2012.	2012
3	R. F. Pierret, Semiconductor Device Fundamentals. Pearson, 2006.	Latest edition
5	B. Razavi, Fundamentals of Microelectronics, 2nd edition. Wiley-India, 2014.	2014

Suggested Reference Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	B. G. Streetman and S. K. Banerjee, <i>Solid State Electronic Devices</i> , 7th edition. Pearson, 2015.	2015
2	A. S. Sedra and K. C. Smith, <i>Microelectronic Circuits: Theory and Applications</i> , 7th edition. Oxford, 2017.	2017
3	Millman & Halkias, Electronic devices and circuits, TMH	Latest Edition
4	Sedra, A. S., Smith, K. C., and Chandorkar, A. N., (2013), Microelectronic Circuits: International Version, 6th Edition, Oxford University Press	2013

Course Name	:	CIRCUIT THEORY
Course Code	:	EC1233
Credits	:	4
LTP	:	310

Course Objectives: The main aim of this course is to make students learn the fundamentals of network analysis using matrices, two-port and multi-port networks, and network synthesis and filter circuits.

	Total No. of Lectures	s - 42
Lect	ure wise breakup	Number of
		Lectures
1	SINUSOIDAL STEADY STATE ANALYSIS: Sinusoids, Phasors, Impedance and admittance, kirchhoff's law in frequency domain, impedance combinations, steady state analysis: nodal and mesh analysis, dependent, independent voltage and current sources, source transformation, thevenin and norton equivalent. AC power analysis: instantaneous and average power, max average power transfer, RMS value,	8
	apparent power and power factor, complex power, conservation of AC power. Three phase circuits: types of load and source connections, power in balanced three phase circuits, star delta transformations. Network theorems: compensation, superposition, reciprocity, millman's and tellegen's theorem.	
	TRANSIENT NETWORK ANALYSIS:	8
2	Complex frequency and Laplace transforms, circuits analysis in S domain, poles, zeros, transfer Functions and driving point impedances and convolution. Step and impulse response of RL, RC, LC, RLC circuits, initial and final conditions.	
3	TWO PORT NETWORKS : short circuit admittance parameter, open circuit impedance parameters, hybrid and transmission parameters, series parallel and tandem connection of two port networks, multi port networks, multi terminal networks, indefinite admittance matrix and its properties, relationships among different network parameters	10
4.	Network Synthesis Elements of realizability theory: causality and stability, hurwitz polynomials, positive real functions, elementary synthesis procedure, synthesis of one port network with two kind of element: L-C driving point immittances, synthesis of R-L, L-C functions.	6
	GRAPH THEORY:	5
4	Introduction, Linear graph of a network, Tie-set and cut-set schedule, incidence	
	matrix, Analysis of resistive network using cut-set and tie-set, Dual of a network.	
5	FILTERS:	5
	Series and parallel resonance, single and double tuned circuits. Passive filters: lowpass, highpass, bandpass and bandstop filters, difference between actual and ideal frequency response	

Cour	Course Outcomes: By the end of the course, the student must be able to:		
1	Acquire knowledge of the fundamentals of network analysis using matrices, two-port		
	and multi-port networks, network synthesis and filter circuits		
2	Analyze DC and AC (single and three phase) circuits making use of various circuit techniques.		
3	Analyze the magnetic circuits.		
4	Analyze various types of two port networks and their inter connection.		

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint	
1	Network Analysis, M.E Van Valkenburg, PHI 3 rd edition	1980	
2	Fundamentals of Electric Circuits, C K Alexander & Matthew N O Sadiku, Mc Graw Hill, 2 nd edition.	2003	
3	Circuit Theory Analysis and Synthesis, A. Chakrabarty, Dhanpat Rai Publishing Company (P) Limited,	2008	
4	Engineering Circuit Analysis, W H Hayt, J E Kemmerly & S M Durbin, Tata McGrawHill Education,	2005	

Course Name	:	ANALOG ELECTRONICS
Course Code	:	EC1241
Credits	:	4
LTP	:	3-0-2
a		

By the end of this course, the students should be able to design and analyze feedback amplifier and oscillator circuits, explain basic building blocks of operational amplifier, their functioning and demonstrate its various applications in analog systems. The students should also be able to classify various filters and their design and describe the working of multivibrators and operating principle of Phase locked loop.

	Total No. of L	ectures – 42
Lect	ure wise breakup	No. of
		Lectures
1.	POWER AMPLIFIERS	(6)
	Class A, B, AB stages, output stages, short circuit protection, power transistors	
	and thermal design considerations	
2.	FEEDBACK AMPLIFIERS AND OSCILLATORS	(8)
	Concept of feedback, Negative feedback, Gain Desensitization, Bandwidth	
	modification, Modification of I/O impedances, sense and Return techniques,	
	VCCS, VCVS, CCVS, CCCS, Stability in feedback systems, Basic principles	
	of sinusoidal oscillators, tuned collector, tuned base, Hartley oscillator,	
	Colpitt's Oscillator, Phase Shift Oscillator, Wein Bridge Oscillator, Crystal	
	Oscillator, Frequency stability of Oscillator.	
3.	DIFFERENTIAL AMPLIFIERS	(6)
	MOS differential pair's large signal analysis, small signal analysis of	
	differential pairs, cascode differential amplifiers, common-mode rejection, and	
	differential amplifiers with active load	
4.	OPERATIONAL AMPLIFIERS	(10)
	Op-Amp characteristics and specifications, concept of virtual ground, Inverting	
	and non-inverting amplifiers, op-amp applications including voltage summer,	
	integrator, differentiator, instrumentation amplifiers, Zero crossing detector,	
	Schmitt trigger	
5.	ACTIVE FILTERS	(7)
	Filter specifications, design of low pass, high pass, band pass and band reject	
	filters using operational amplifiers; Design of Butterworth and Chebyshev	
	filters, higher order filters; State variable filters.	
6.	MULTIVIBRATORS	(5)
	Multivibrators-Monostable, Bistable, Astable, Unsymmetrical/symmetrical	
	triggering, 555 timer-block diagram and working, 555 timer as monostable,	
	astable and bistable multivibrator, phase-locked loop (PLL), voltage regulators	

List o	No. of turns	
1.	To simulate feedback amplifiers and oscillator circuits.	2
2.	To study the working of RC oscillator.	1
3.	To study the working of Opamp as summing and difference amplifier.	1
4.	To study the working of Opamp as integrator & differentiator.	1
5.	To study the working of low pass filter and observe the frequency response.	2
6.	To study the working of high pass filter and observe the frequency response.	2
7.	To study the working of Astable, monostable and bistable multivibrator using 555	2
	timer	

1.	
	Describe the fundamentals of feedback amplifiers and oscillators.
2.	Draw outputs of the wave shaping circuits and explain operational amplifier along with its applications.
3.	Identify the multivibrator circuits and explain the basic principle of phase locked loop.
4.	Demonstrate the working behavior of devices and circuits and their applications.

Suggested Books:			
Sr.	Name of Book/Authors/Publisher	Year of	
No.		Publication	
		/Reprint	
	Sedra, A. S., Smith, K. C., and Chandorkar, A. N., (2013),	2013	
1.	Microelectronic Circuits: International Version, 6th Edition, Oxford		
	University Press		
2	Op-amps and linear integrated circuits by Ramakant A Gayakward	2000	
۷.	Prentice hall 4 th edition		
3	Electronics Devices & Circuit Theory, RL Boylestead & L Nashelsky,	2008	
5.	PHI		
4.	Microelectronic Circuits, AS Sedra & KC Smith, OXFORD	2003	
5	Electronics Circuit Analysis and Design, Donald A. Neamen, Tata	2009	
5.	McGraw Hill		
6	B. Razavi, Fundamentals of Microelectronics, 2nd edition. Wiley-	2014	
0.	India, 2014.		
7.	Millman, Halkias, Integrated Electronics, TMH	Latest edition	

Course Name	:	PROBABILITY AND RANDOM PROCESSES
Course Code	:	EC1242
Credits	:	4
LTP	:	3-1-0

By the end of this course, the students should be able to define a random variable and a random processes, get comfortable in working with discrete and continuous random variables and different random processes, i.e., Markov, Bernoulli and Poisson, understand the notion of convergence of random variable and can deduce inequalities frequently used in the probabilistic modeling, appreciate the applications of random variables and processes in communication engineering.

Total No. of

Lectures – 42

Lecture wise breakup		Number of Lectures
1	INTRODUCTION TO PROBABILITY Definitions of probability (Axiomatic and relative frequency), Axioms of probability, Events as sets, Conditional Probability, Independence, Concept of random variables	4
2	DISCRETE RANDOM VARIABLES Some examples of discrete distributions, Probability mass functions, Independence, Expectation, Indicators and their usage, Conditional distributions and conditional expectations, Sum of random variables, Simple random walk	6
3	CONTINUOUS RANDOM VARIABLES Some examples of continuous distributions, Probability density functions, Independence, Expectation, Conditional distributions and conditional expectations, Functions of random variables, Introduction to order statistics	9
4	CONVERGENCE OF RANDOM VARAIBLES AND DIFFERENT INEQUALITIES Central limit theorem, Law of large numbers, zero-one law, Borel-Cantelli Lemma, Markov inequality, Chebyshev inequality, Chernoff Bounds	7
5	RANDOM PROCESSES Definition of random processes, Gaussian processes, Stationary processes, Markov Processes (MP), Classification of states in MP, Stationary distributions in MP, Bernoulli Processes, Poisson processes, Combining and splitting of Poisson processes.	12
6	APPLICATIONS OF PROBABILITY AND RANDOM PROCESS IN COMMUNICATIONS Self -Information and entropy, Probability of error calculation using MAP and ML Detector, Characterizing wireless channel using random variables, Wireless networks and stochastic geometry, Markov state modeling of a communication channel.	4

Cour	Course Outcomes: By the end of this course, the students will be able to	
Cour	se Outcomes. By the end of this course, the students will be able to	
1	Describe the concept of random variables and get comfortable with axiomatic definition of	
	probability.	
2	Work with different discrete and continuous random variables and their functions.	
3	Get familiarized with convergence of random variables and different inequalities frequently	
	used in probabilistic modeling.	
4	Describe the concept of random processes, and work with different stochastic processes like	
	Markov, Bernoulli and Poisson processes.	
5	Appreciate the importance of probability in the study of communication engineering	

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication / Reprint	
1	Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random variables and Stochastic processes", TMH, 4 th edition,	2002	
2	Robert G. Gallager, "Stochastic Processes: Theory for Applications", CUP, 1 st edition	2013	
3	Geoffrey Grimmett and David Stirzaker, "Probability and Random Processes", OUP, 3 rd edition	2001	
4	J. Proakis, "Digital communications", MGH, 5 th Edition	2008	
5	Andrea Goldsmith, "Wireless Communications." CUP, 1 st edition	2005	

Course Name	SIGNALS AND SYSTEMS
Course Code	EC1243
Credits	4
LTP	3-1-0

At the end of this course, students should be able to Analyze continuous and discrete time signals and systems. Analyze communication systems in time and frequency domain. Comprehend signals based on Fourier transform and study the impulse response of RC &RL networks, pulse response of RL, RC networks.

Lect	ure wise breakup (Total no. of Lectures=42)	Number of
		Lectures
	INTRODUCTION.	
1	Signals and their classification, Basic operations on signals, elementary CT/DT signals, properties and classification of systems, Systems viewed as Interconnection of Operations	08
2	TIME DOMAIN REPRESENTATION OF LINEAR TIME	11
	INVARIANT SYSTEMS: Introduction, The Convolution Sum and evaluation procedure, The convolution Integral and Evaluation Procedure, Interconnection of LTI procedures, Relation between LTI system properties and impulse response, Differential and Difference Equations representation, Block Diagram Representation, State Variable Description	
3.	FOURIER REPRESENTATIONS OF SIGNALS: Introduction, Complex Sinusoids and Frequency Response of LTI Systems, Fourier representation of Discrete time and Continuous time Periodic Signals, Fourier representation of Discrete time and Continuous time Nonperiodic Signals, Properties of Fourier Representations, correlation, auto-correlation and cross-correlation and their properties, energy spectral density, power spectral density	10
4.	REPRESENTING SIGNALS BY USING CONTINUOUS TIME COMPLEX EXPONENTIALS: the LAPLACE TRANSFORM Introduction, Unilateral and Bilateral laplace transform, their inversion and properties, properties of the region of convergence, transfer function, causality and stability, Laplace transform methods in circuit analysis	06
5	REPRESENTING SIGNALS BY USING DISCRETE TIME COMPLEX EXPONENTIALS: THE Z- TRANSFORM: Z-Transform and its properties, Region of convergence and its properties, inverse z transform, transfer function, causality and stability. Computational structure for implementing discrete time LTI systems, Unilateral Z-Transforms.	07

Course Outcome: By the end of this course student will be able to:

- 1. Explain in detail continuous and discrete signals and systems and solve problems based on them
- 2. Represent continuous and discrete systems in time and frequency domain using different transforms.

- Analyze and Characterize the CT systems through Fourier Transform and Laplace Transform
 Analyze and Characterize the DT systems through DTFT and z-Transform
 Apply the knowledge of signals and systems to various field of electronics and communication
 Analyze the response of linear, time-invariant dynamic systems to various input signals

Textbook & Related Course materials Books

- Signals and systems by A.V. Oppenheim & A.S. willisky, 2nd edition, Pearson education (Latest Edition)
- Simon Haykin and Barry van Veen "Signal and Systems", Latest edition, Wiley India Pvt. Ltd.
- Modern Digital & Analog Communication Systems by B.P. Lathi, pub. Oxford Univ. Press, 3rd Edition (2009)
- 4. Signals And Systems by A. Anand Kumar, Third Edition, Prentice Hall Publication.
- 5. Introduction to Communication Theory by P.D. Sharma (Latest Edition)
- 6. Circuits and Networks (Analysis and synthesis):- Sudhakar, Shyammohan (Latest Edition)

Course Name	:	ANALOG AND DIGITAL COMMUNICATION
Course Code	:	EC1351
Credits	:	4
LTP	:	3-0-2

By the end of this course, the students should be able to describe explain various analog modulation techniques, i.e., amplitude and angle modulation schemes, their generation and detection, and enlist the various functional blocks in analog communication receiver and transmitter. The students should also be able to describe sampling theorem and various pulse modulation schemes. The student should also be able to list the advantages of digital communication system over analog communication systems and appreciate the mathematics involved in designing digital communication systems and understand different digital modulation schemes, and have an introductory idea of information theory.

Lecture wise breakup		Number of
		Lectures
1	INTRODUCTION TO COMMUNICATION SYSTEMS:	2
	Principles of Communication, Signal to Noise Ratio, Channel Bandwidth, Rate	
	of Communication, Modulation.	
2	AMPLITUDE MODULATION:	7
	Base band and carrier communication, Amplitude modulation: Double side Band	
	(DSB), Single Side Band (SSB), Vestigial Sideband (VSB), AM Receiver.	
3	ANGLE MODULATION:	7
	Concept of Instantaneous Frequency, Bandwidth of Angle Modulation, Generation of	
	FM wave, Demodulation of FM, Interference of Angle Modulated Systems, FM	
	Receivers.	
4	DIGITAL TRANSMISSION SCHEMES:	5
	Sampling theorem, Analog to digital conversion schemes: Pulse Amplitude	
	Modulation, Pulse Width Modulation, Pulse Position Modulation, Pulse Code	
	Modulation (PCM), Differential PCM, Delta Modulation, Adaptive Delta Modulation.	
	INTRODUCTION TO DIGITAL COMMUNICATION SYSTEMS:	6
5	Advantages of digital communication over analog communication, Digital	
-	communication system (description of different modules of the block diagram),	
	Complex baseband representation of signals, Gram-Schmidt orthogonalization	
	procedure. M-ary orthogonal signals, bi-orthogonal signals, simplex signal	
	waveforms.	
	DIGITAL MODULATION TECHNIQUES:	10
6	Pulse amplitude modulation (binary and M-ary, Quadrature Amplitude Modulation	
	(QAM)), Pulse position modulation (binary and M-ary), Carrier modulation (M-ary	
	Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Frequency Shift Keying	
	(FSK), Differential Phase Shift Keying (DPSK)), Continuous phase modulation	
	(Quadrature Phase Shift Keying (QPSK) and variants, Minimum Shift Keying	
_	(MSK), Gaussian Minimum Shift Keying (GMSK)).	
/	INFORMATION THEORY AND CODING:	5
	Concept of information, Entropy, Mutual information, Source encoding, channel	
	encoding, channel capacity	

List of Simulations & Experiments:		Number of Turns
1	To perform modulation and demodulation of Double sideband modulation with carrier and double sideband modulation- suppressed carrier (DSB-SC)	1
2	To perform single-sideband modulation (SSB) and demodulation	1
3	To perform phase and frequency modulation and demodulation	1
4	To study the operation of phase lock loop (PLL)	2

5	To perform verification of sampling theorem	1
6	To perform modulation and demodulation of pulse amplitude modulation (PAM), pulse	2
	width modulation (PWM), and pulse position modulation (PPM)	
7	To perform delta modulation and adaptive delta modulation	2
8	To perform modulation of amplitude shift keying (ASK), frequency shift keying (FSK)	2
9	To perform modulation of differential phase shift keying modulation (DPSK), minimum	2
	shift keying (MSK)	

Cours	Course Outcomes: By the end of this course, the students will be able to		
1.	Explain the working of different analog communication modulation techniques and can describe their modulation and demodulation.		
2.	Understand Sampling theorem, and can understand various analog to digital conversion schemes, i.e., Pulse Amplitude Modulation, Pulse Code Modulation (PCM), Differential PCM, and various delta modulation schemes, i.e., Delta Modulation, and Adaptive Delta Modulation.		
3.	Appreciate the mathematical foundations of digital communication systems and can explain various digital modulation schemes.		
4.	Have a basic idea about information theory.		
5.	Perform various analog and digital modulation schemes using MATLAB.		

Sug	gested Books:	
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	Electronic Communication Systems by G. Kennedy And B. Davis, Mc Graw Hill, 4th Edition	2006
2.	Digital Communication by John G. Proakis and Masoud Salehi, Fifth edition, McGraw- Hill Higher education	2008
3.	Modern Digital & Analog Communication Systems by B.P. Lathi, Oxford University Press,4th Edition	2009
4.	Principles of Communication Systems by Taub and Schilling Tata McGraw-Hill Education, 3 rd edition	2008
5.	Elements of Information Theory, by Thomas Cover and Joy Thomas, 2 nd edition, Wiley -Interscience	2006

Course Name	:	CONTROL SYSTEMS
Course Code	:	EC1352
Credits	:	4
LTP	:	3-1-0

By the end of this course, the students should be able to model a control system using different approaches, analyse the system in time domain and frequency domain and investigate the stability. The student should also be able to design lead, lag, lag lead compensators for the specified requirements.

	Total No. of Lectures	s - 42
Lectu	ıre wise breakup	Number of
		Lectures
	INTRODUCTION:	4
1	Basic components of a control system, classification of control system,	
-	Servomechanism, Regulator and process control, Feedback control Systems-	
	Characteristics and Performance	-
	MODELLING A CONTROL SYSTEM:	6
2	Transfer function approach, Block Diagram Representation, Signal flow	
_	graphs, Error Analysis	_
	TIME RESPONSE ANALYSIS:	7
3	Time response of first order systems, second order systems, steady state errors	
-	and error constants, Sensitivity, Concept of Stability, Conditions of Stability	
	,Root Locus Technique	1.4
	FREQUENCY RESPONSE ANALYSIS:	14
	Correlation between time and frequency response, Polar Plots, Bode Plot,	
4	stability margins on Bode plots, Nyquist criteria, Assessment of stability using	
	Nyquist criteria, Design problem, preliminary considerations of classical	
	design, realization of basic compensators.	
	lead compensator, Lag compensator, Lag Lead Compensator	
	CONTROL ACTIONS AND CONTROLLER CHARACTERISTICS:	3
5	Proportional, Integral and Derivative Control Actions, Proportional plus	
5	integral control action, proportional plus derivative control action, PID	
	controller	
	SAMPLED DATA CONTROL SYSTEMS:	4
6	Sample and Hold operations, frequency domain considerations, Transform	
-	Analysis of sampled data systems, Linear difference equations, Z-transform,	
	block diagram analysis of	
	sampled data systems,	
	STATE SPACE ANALYSIS OF CONTROL SYSTEMS:	4
7	State Space representation, Transfer Matrix, State Transition Matrix, Single	
,	Input Single output system, multiple input multiple output system,	
	Controllability and Observability	

Cour	se Outcomes: By the end of this course, the students will be able to
1	Determine the transfer function of the system using different approaches.
2	Determine the time response of the system and investigate the stability.
3	Determine the frequency response of the system and investigate the stability.
3	Design lead, lag, lag lead compensators and PID Controller for the specified requirements.
4	Develop the state space representation of the system and calculate the response to the input.
5	Analyse the sampled data control systems.

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication / Reprint	
1	Control Systems Engineering By Nagrath and Gopal, New Age	2006	
	International,4 th Ed		
2	Digital Control Engineering by M Gopal, New Age International	2003	
3	Automatic Control Systems, Kuo, B.C, 9th Ed., Wiley India	2009	
4	Modern Control Engineering, Ogata, K., 5th Ed., Pearson Education. 2008	2009	
5	Modern Control Systems, Dorf, R.C. and Bishop, R.H., 12th Ed., Prentice-Hall	2010	
	of India.		
6	Control Systems Engineering, Nise, N. S., 6th Ed., Wiley India	2010	

Course Name	:	MICROWAVE ENGINEERING
Course Code	:	EC1353
Credits	:	4
LTP	:	3-0-2

By the end of this course the student should be able to understand the basics of microwave measurements and characteristics and working of microwave sources, generators and amplifiers, components and devices. The student should also be able to understand microwave propagation in transmission lines and waveguides, and microwave radiation through antennas and the microwave propagation. The student should also be able to describe the radar systems, scanning and tracking techniques used in radar systems. They should also be able to practically analyse various microwave devices, their characteristics and microwave measurements using test bench.

Total No. of Lectures – 42

Lect	ure wise breakup	Number of
1	TDANSMISSION LINES AND WAVECHIDES	Lectures
1	Concept of Distributed elements. Equations of Voltage and Current. Types of	0
	Transmission lines Standing Waves and Impedance Transformation Lossless	
	and Low loss Transmission lines. Power transfer on a transmission line.	
	Transmission line calculations using Smith Chart, Applications of	
	transmission lines Rectangular Waveguides, Field analysis and characteristics	
	of TE and TM modes, Losses inwaveguides, Circular waveguides	
	MICROWAVE COMPONENTS	8
2	Introduction to microwave engineering, Attenuators and phase shifters, Bends,	
	Corners, Twists, Flanges, Shorts, Matched loads, Tees (e-plane h plane &	
	hybrid), Rat-race, Directional Couplers, Scattering matrix. Ferrite devices	
	(isolator, circulator, gyrator), Cavity resonators. Power and impedance	
	measurement, Measurement of SWR, Frequency and wavelength.	
	MICROWAVE SOURCES AND DETECTORS	8
3	Limitations of conventional solid state devices at microwave frequencies,	
	Transistors (MESFET, HEMT), Diodes (tunnel, varactor, pin), transferred	
	electron devices (GUNN), Avalanche transit time devices (IMPATT AND	
	IRAPATT), Limitations of conventional tubes at microwave frequencies,	
	Microwave detectors	
1	ANTENNAS AND WAVE PROPOGATION:	8
-	The Potential Functions, Elemental Dipole Antennas (The Electric (Hertzian)	0
	Dipole Magnetic Dipole (Loon) Antenna Characteristics. The Long Dipole	
	and Monopole Antonnas Antonna Arrays Antonna Directivity and Goin	
	Antenna Coupling The Eric Transmission Equation Effect of Cround	
	Antenna Coupling, The Frits Transmission Equation, Effect of Ground	
	Reflections on Signal Transmission, Introduction	
	to wave propogation.	
_	Basic principal block diagram and operation of radar. Padar range equation	10
5	Dasic principal block diagram and operation of radars. Dopplar determination of	
	rkr s, kange antoiguities. Applications of radars. Doppler determination of	
	velocity, Cw radar and its initiations, FM-Cw radar, Basic principle and	
	Operation of M11 radar, Delay line cancellers, Blind speeds and staggered	
	PRF. Various scanning techniques (horizontal, vertical, spiral, palmer, raster,	
	nodding), Angle tracking system (lobe switching, conical scan, monopulse),	
	Range tracking systems, Doppler(velocity) tracking systems.	

List of Simulations & Experiments:		Number of Turns
1	Study of various microwave components	1
2	Measure the insertion loss and isolation of a circulator.	2
3	Draw the V-I characteristics of Reflex Klystron.	1
4	Plot the power output v/s frequency characteristics of a Gunn source.	1
5	Design a Schottky diode at S Band frequencies structure using software.	2
6	Design a GaN MOSFET at K band using Software.	1
7	Plot the radiation characteristics of the horn antenna.	1
8	Simulation of Microstrip antenna for k-band application	1
9	Fabrication of Micro Strip antenna for k-band application	2
	Design an antenna and calculate Gain, directivity, antenna efficiency,	2
10	bandwidth and 3 dB beam width using empirical formulas. Compare the	
	simulated results obtained by software and theoretical results and Observe the	
	effect of feed location on center frequency, return loss and bandwidth.	

Cou	Course Outcomes: By the end of this course the student will be able to		
1	Understand a wide range of microwave generators, components, tubes and their		
	characteristics.		
2	Get a basic idea about microwave measurements.		
3	Describe radar systems, and the scanning and tracking techniques used in radar	systems.	
4	Understand microwave propagation through waveguides and transmission line	s.	
5	Describe radiation of microwaves through antenna and the propagation of radiated		
	microwaves in the environment.		
6	Characterize microwave devices in terms of the directionality of communication	on.	
7	Use a microwave test bench in analyzing various types of microwave measurer	nents.	
Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint	
1	Microwave devices and circuits (3 rd Edition) by Samuel Liao, Pearson Publications	2013	
2	Introduction to Radar systems (2 nd Edition) by Merill I Skolnik,McGraw Hill Publications	2003	
3	Microwave devices and Radar Engineering (3 rd Edition) by Kulkarni,Umesh Publications	2003	
4	Foundation of Microwave Engineering (2 nd Edition) by RE Collin; McGraw Hill Publications	2001	
5	Sonar for Practicing Engineers (3 rd edition), by A.D. Waite, Wiley Publications	2002	

			-	
	Communication Engineering	VLSI Design	Embedded Systems	
DEC 1/	Information Theory and Coding (3-1-0)	Electronics Devices Fabrication (3-0-2)	Microprocessor and Microcontroller (3-0-2)	
DEC 2	Computer Communication Networks (3-1-0)	HDL based System Design (3-0-2) (DEC2)	Industrial Automation (3-1-0)	
	Digital Image Processing (3-1-0)	Power Electronics (3-1-0)	Embedded System Design (3-0-2)	
	Digital Signal Processing (3-0-2) (DEC2)	Digital VLSI Design (3-0-2) (DEC2)	IoT with ARDUINO and Raspberry Pi (3-02)	
DEC 3/	Antenna and Wave Propagation (3-1-0)	PCB Circuit Design (3-0-2)	Neural Networks and Fuzzy System (3-1-0)	
DEC	Satellite Communication (3-1-0)	Foundations of VLSI CAD (3-1-0)	Computer Architecture (3-1-0)	
4	Optical Communication (3-0-2)	Analog VLSI Design (3-0-2)	Multimedia technology (3-1-0)	
	Wireless Communication (3-0-2)	FPGA & ASICs (3-1-0)	Digital Image Processing (3-1-0)	
DEC	Advanced digital communication (3-1-0)	Nanotechnology (3-1-0)	Advanced Sensing technology (3-1-0)	
5	Mobile and Cellular Communication (3-0-2)	MEMS & Microsystems (3-1-0)	Robotics (3-1-0)	
	MIMO Wireless Communication (3-1-0)	Low Power VLSI Devices (3-1-0)	PLC Designing (3-1-0)	
		Advanced VLSI Devices (3-1-0)		

DEPARTMENT ELECTIVE POOLS (Specialized Domains)

The list of department elective subjects could be changed as per requirements.

<u>Communication</u> Engineering Pool

Course Name	:	INFORMATION THEORY AND CODING
Course Code	:	EC2211
Credits	:	4
LTP	:	3-1-0

At the end of this course, the students should be able to appreciate the concept of information, entropy and entropy rates, get familiarized with asymptotic equipartition property theorem. The student should also be able to understand various data compression schemes and evaluate the capacity for discrete memoryless channels. The student should also be able to understand the encoding and decoding of different linear block and convolution codes.

Lect	ure wise breakup	Number of Lectures
1	INTRODUCTION TO THE CONCEPT OF INFORMATION: Shannon measure of information, Self-information and entropy, Joint and conditional entropy, Kullback–Leibler distance and Mutual information, Chain Rules for Entropy, Various inequalities useful in information theory (Jensen's Inequality, Log Sum Inequality, Data-Processing Inequality, Fano's inequality), Markov processes and Entropy rates	8
	ASYMPTOTIC EQUIPARTITION PROPERTY AND DATA	12
2	COMPRESSION : Asymptotic equipartition property (AEP) theorem, Consequences of the AEP: Data Compression, High-probability sets and the typical set, Examples of source codes, Kraft Inequality, Optimal Codes, Bounds on the optimal code length, Kraft inequality for uniquely decodable codes, Huffman codes, Shannon–Fano– Elias coding	
3	CHANNEL CAPACITY Capacity evaluation of various binary channels, capacity evaluation of symmetric channels (Strongly and Weakly symmetric discrete memoryless channels), Channel coding theorem and the promise of the existence of block codes, Source–channel separation theorem.	8
4	LINEAR BLOCK CODES : Linear codes and vector spaces, Generator matrix and parity check matrix, Weights and distance for linear block codes, Hamming codes, Syndrome decoding, Weight distribution polynomial, Bounds on minimum distance of linear block codes (Singleton and Hamming Bound), Cyclic codes, Encoding of cyclic codes, Decoding of cyclic codes using <i>Meggitt</i> Decoder	8
5	CONVOLUTIONAL CODES: Structure of convolutional codes (trellis representation), Encoding of convolutional codes, Transfer function of convolutional codes, Decoding of convolutional codes using Viterbi algorithm.	6

Course Outcomes: By the end of this course, the students will be able to:		
1	Describe the concepts of information, entropy and entropy rates.	
2	Get familiarized with asymptotic equipartition property theorem and its applications in data	
	compression.	
3	Understand various data compression schemes.	
4	Evaluate the capacity for discrete memoryless channels and get an understanding of	
	channel coding theorem and source–channel separation theorem.	
5	Understand coding and decoding of linear block codes and convolutional codes	

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint	
1	Elements of Information Theory, by Thomas Cover and Joy Thomas, 2 nd edition, Wiley –Interscience	2006	
2	A Course in Error Correcting Codes, by Jorn Justesen and Tom Hoholdt, 1 st edition, Hindustan Book Agency.	2012	
3	Digital Communications, by John Proakis & Masoud Salehi, 5th edition, McGraw-Hill,	2008	
Course Name	:	COMPUTER COMMUNICATION NETWORKS	
--------------------	---	---------------------------------	
Course Code	:	EC2212	
Credits	:	4	
LTP	:	3-1-0	

By the end of this course, the students should be able to define the basic concepts of Data communication with different models, classify and compare the physical layer, Data Link Layer, Network Layer and Transport Layer and their functions. The students should also be able to summarize the Queueing concept, switching concept, its different types and explain the working of various types of wireless networks and their protocol.

Tot	al No. of Lectures: 42	
Lec	ture wise breakup	No. of Lectures
1.	OVERVIEW OF DATA COMMUNICATION AND NETWORKING:	(5)
	Data communications, Networks, The Internet, Protocols and standards, Layered	
	tasks, OSI model, TCP /IP protocol Architecture Overview (Physical, Data link,	
	Network, Transport, Application Layer), History of the computer network	
2.	PHYSICAL LAYER AND SWITCHING	(5)
	Data rate limit, Transmission impairments, Line coding, Block coding, FDM, WDM,	
	TDM, Guided media, Unguided media; Circuit Switching, Packet Switching	
3.	POINT-TO- POINT PROTOCOLS	(6)
	Error Detection and correction, Flow and error control, Stop and wait ARQ, go back	
	n ARQ, Selective repeat ARQ, Framing and standard Data Link Control protocol -	
	HDLC.	
4.	MULTIACCESS COMMUNICATION AND MULTIPLE ACCESS PROTOCOLS:	(10)
	Queuing models in communication networks: Little's Theorem, M/M/1 Queueing	
	System, M/M/m, M/M/m/m queueing systems	
	Random access (ALOHA, slotted ALOHA, CSMA, CSMD/CD) Performance modelling	
	and analysis., Controlled access (Reservation, Polling, Token Passing), Channelization	
	(FDMA, TDMA, CDMA), Local Area Networks, Traditional Ethernet, Fast Ethernet,	
	Gigabit Ethernet	
5.	INTERNETWORKING DEVICES AND ROUTING PROTOCOLS	(7)
	Repeaters, Bridges, Type of Bridges, Routers, Routing concepts, Gateways,	
	Internetworks, ARP, IP, ICMP, IPV6, Unicast routing, Unicast routing protocol,	
	Multicast routing, Multicast routing protocols, introduction to Security,	
	Cryptography, and SSL, Security - firewalls, DoS, etc.	
6.	TRANSPORT LAYER PROTOCOLS	(5)
	Process to process delivery, User datagram protocol (UDP), Connection less	
	transport (UDP), Principles of reliable data transfer, Transmission control protocol	
	(TCP), Data traffic, Congestion, Congestion control, Quality of service	
7.	APPLICATION LAYER PROTOCOLS	(4)
	DNS, Electronics mail architecture and services, message formats and transfers,	
	WWW architectural overview, static and dynamic web pages, HTTP, Digital audio	
	and video	

Соі	Course Outcomes: By the end of this course, the students will be able to			
1.	Describe the computer network system and its communication.			
2.	Identify and compare the various layers of a computer network model, their role and characteristics.			
3.	Explain various routing algorithms and switching concepts.			
4.	Identify the various wireless network models.			

Sugg	Suggested Books:			
Sr. No.	Name of Book/Authors/Publisher	Year Of Publication /Reprint		
1.	Introduction to Data Communication & Networking by Behrouz Forouzan, Tata McGraw Hill Edition	2012		
2.	Data and Computer Communications by William Stallings PHI 8 th Edition.	2007		
3.	Data Communication and Distributed Networks, Ulylers D. Black, PHI 3rd ed.	1999		
4.	Computer Networks, Andrew S.Tanenbaum, , PHI 2nd ed.	2000		

Course Name	:	DIGITAL IMAGE PROCESSING
Course Code	:	EC2213
Credits	:	4
LTP	:	3-1-0

At the end of this course, the students should be able to learn and understand the fundamentals of image processing, transformation techniques, design & applications of image processing. The students should also be able to provide a useful skill base that would allow them to carry out further study should they be interested and to work in the field.

Total No. of Lectures-42

Leo	cture wise breakup	No. of Lectures
1	FUNDAMENTALS OF IMAGE PROCESSING: Introduction,Human visual system,Steps in image processing systems, Image acquisition, Sampling and Quantization, Pixel relationships,Light, brightness adaption and discrimination, Color fundamentals and models, File formats, Image operations, Arithmetic, Geometric and Morphological.	9
2	IMAGE ENHANCEMENT: Basic of intensity transform and spatial domain, Gray level Transformations, Contrast stretching, Thresholding, Image negative, Log transformation, Power-low transformation, Intensity level slicing and Bit-plane slicing, Histogram processing, Histogram equalisation process, Spatial filtering smoothing and sharpening, Filtering in frequency domain, Fourier transform of sampled function, DFT, FFT, DCT, Image smoothing and sharpening filters – Homomorphic Filtering.	9
3	IMAGE SEGMENTATION AND FEATURE ANALYSIS: Fundamentals,Detection of Discontinuities, Edge operators, Edge linking and Boundary Detection, Thresholding, Edge based segmentation, Region based segmentation,Region split and merge techniques, Morphological Watersheds,Motion Segmentation, spatial techniques and frequency domain techniques, feature analysis and extraction .	8
4	MULTI RESOLUTION ANALYSIS AND COMPRESSIONS: Multi Resolution Analysis: Image Pyramids, Multi resolution expansion, Wavelet Transforms, Image compression:Fundamentals, Image compression models, Elements of Information Theory, Error free compression, Lossy Compression, Image formats, and Compression Standards, Basic compression methods: Huffman coding, Arithmetic coding, LZW coding, JPEG compression standard.	8
5	APPLICATION OF IMAGE PROCESSING: Image classification, Image recognition, Image fusion, Steganography, Colour Image Processing, Color models, Pseudo-colour image processing, Pattern recognition.	8

Course Outcomes: By the end of this course, the students will be able to:			
1	Acquire the fundamental concepts of a digital image processing system.		
2	Design and implement with Matlab algorithms for digital image processing.		
3	Utilize the skill base necessary to further explore advanced topics of Digital Image Processing.		

S.No.	Name of Book/Authors/Publisher	Year of Publication/ Reprint
1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson Education	2001
2	Milan Sonka, ValclavHalavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", 2nd Edition, Thomson Learning	1998
3	Anil K. Jain, "Fundamentals of Digital Image Processing". Pearson Education,	1989
4	S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata McGraw Hill Publication	2009
5	Rafael C. Gonzalez, Richard E. Woods & S L Eddins, "Digital Image Processing using MATLAB", Prentice hall.	2003

Course Name	:	DIGITAL SIGNAL PROCESSING
Course Code	:	EC 2214 Pre-requisite: Signal and systems
Credits	:	4
LTP	:	302

Course Objectives:	
--------------------	--

To provide concepts and principles of DSP, its implementation and applications of DSP algorithms.

Lecture wise breakup		Number of
		Lectures
	INTRODUCTION	
	Review of discrete signals and systems analysis, sampling, quantization	2
	and reconstruction processes, Typical applications of DSP	
	TRANSFORMATION OF DISCRETE SIGNALS	12
2	Discrete Fourier Transform (DFT) and its properties, IDFT, circular	
	convolution using DFT, Fast Fourier Transform (FFT), Decimation in	
	time and decimation in frequency algorithms, IFFT, K L transform,	
	DCT, JPEG and MPEG coding standards, Applications of DFT in speech	
	and audio coding	
	DIGITAL FILTERS	
	Recursive and non-recursive systems, Frequency domain representation	
3	of discrete time systems, systems function, Ideal low pass filter	2
	DESIGN OF IIR FILTERS	
4	Impulse invariance transformation technique, Bilinear transformation,	6
	Design of IIR Filters using Butterworth, chebyshev and elliptic filter,	
	Digital frequency transformation	
	DESIGN OF FIR FILTERS	
5	Design of FIR filters using window technique, frequency sampling	6
	filters	
(DEALIZATION OF DICITAL SUSTEMS	
0	Reach diagrams and signal flow graphs for FIR and IIR systems Direct	Δ
	form cascade and parallel form realization of FIR and IIR systems.	-
7	MULTIRATE DSP & APPLICATIONS	
,	Fundamentals of Multirate systems and its applications, Decimation,	8
	Interpolation, Sampling Rate Conversion, filter banks, introduction to	-
	wavelet transform	
8	ADAPTIVE WEINER FILTER	
	Adaptive Weiner filter & its application in echo cancellation and	2
	equalization	

Total	No.	of	Lectures	- 42

L	ist of Experiments:	Number of Turns
1	Hands on Experience on MATLAB and generation of digital signals	1
2	Write a Program for Discrete Convolution, Impulse Response of finite and infinite signals	1
3	Determine and plot Fourier Transform (magnitude and phase) for the infinite duration sequence.	1
4	Compute DFT and IDFT for the given signal.	1
5	Compute DCT of any given signal.	1
6	Determine impulse response and unit step response of the given system.	1
7	Determine and plot frequency response of any LTI system.	1
8	Determine DTFT of the given sequence and plot magnitude and phase	1
	response.	

9	Design an FIR low pass filter for the given specifications and plot frequency response of the filter.	1
10	Design a LP Butterworth filter for the given specifications and plot frequency response of the filter.	1
11	Write a program to obtain decimated and interpolated output of any given input signal	1
12	Compute FFT of a real time speech and audio signal	2

Course Outcomes: By the end of this course, the students will be able to:		
1	Understand concepts of various transformation techniques such as DFT ,FFT, DCT etc	
2	Understand various design techniques of IIR and FIR digital filters.	
3	Understand principles and applications of multirate systems.	

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication / Reprint	
1	Mitra, S.K., "Digital Signal Processing-A Computer Based Appraoach", 3 Ed., TMH	2010	
2	Digital Signal Processing by A.V Oppenheim and R.W.Schafer, Pearson Education	2006	
3	Digital Signal Processing by S Salivahanan, A Vallavraj, C Gyanapriya, TMH	2011	
4	Proakis, J.G. and Manolakis, D.G., "Digital Signal Processing: Principles, Algorithm	2006	
5	Vaidyanathan, P.P., "Multirate Systems and Filter Banks", Pearson Education.	2003	
6	Ifeachor, E.C. and Jervis, B.W., "Digital Signal Processing: A Practical Approach	2001	

Course Name	:	ANTENNA AND WAVE PROPAGATION
Course Code	:	EC2311
Credits	:	4
LTP	:	310
		Total No. of Lectures – 42

Course Objective: By the end of this course the students should be able to describe the evolution and basics of antenna and wave propagation technology. Students should also be able to design different type of antennas and analyze antenna's performance.

Lecture wise breakup		No. of
	1	Lectures
1	BASIC PRINCIPLES AND DEFINITIONS:	12
	Retarded vector and scalar potentials. Radiation and induction fields.	
	Radiation from elementary dipole (Hertzian dipole, short dipole, linear current	
	distribution), half wave dipole. Antenna parameters: Radiation resistance.	
	Radiation pattern, Beam width, Gain, Directivity, Effective height, Effective	
	aperture. Bandwidth and Antenna Temperature.	
2	RADIATING WIRE STRUCTURES AND ANTENNA ARRAYS:	10
	Folded dipole, Monopole, Biconical Antenna, Loop Antenna, Helical	- •
	Antenna, Principle of pattern multiplication, Broadside arrays, Endfire arrays,	
	Array pattern synthesis, Uniform Array, Binomial Array, Chebyshey Array,	
	Antennas for receiving and transmitting TV Signals e.g. Yagi-Uda and	
	Turnstile Antennas.	
3	APERTURE TYPE ANTENNAS:	10
-	Radiation from rectangular aperture, E-plane Horns, H-plane Horns,	
	Pyramidal Horn, Lens Antenna, Reflector Antennas, Broadband and	
	frequency independent antennas. The frequency independent concept:	
	Rumsey's principle. Frequency independent planar log spiral antenna.	
	Frequency independent conical spiral antenna and Log periodic antenna.	
4	PROPAGATION OF RADIO WAVES:	10
-	Different modes of propagation, Ground waves, Space waves, Surface waves	
	and Tropospheric waves. Jonosphere, Wave propagation in the ionosphere.	
	critical frequency, Maximum Usable Frequency (MUF), Skip distance.	
	Virtual height, Radio noise of terrestrial and extraterrestrial origin, Multipath	
	fading of radio waves.	
C	Outcomes: By the and of this course the student will be able to	

Co	Course Outcomes: By the end of this course the student will be able to				
1.	Analyze a complete radio system comprising of transmitter and receiver with reference to				
	antenna.				
2.	Quantify the fields radiated by various types of antennas.				
3.	Design different types of antennas.				
4.	Analyze antenna measurements to assess antenna's performance.				
5.	Relate the concept of radio wave propagation.				

~				
Sug	ggested Books:	Year of		
~ ~ ~ ~		Dublication /		
		Publication/		
		Reprint		
1		1005		
1	Antenna & Wave Propagation by Robert E.Collin, McGraw Hill	1985		
2	Antenna Theory Analysis and Design by Balanis A Constantine	1997		
	and addition Willow New York	1771		
	2 edition whey, New York			
3	Antenna and Wave Propagation by Prasad KD, 3 rd edition, Satva	1996		
	Proloch on New Delle	1770		
	Prakasnan, New Deim			
4.	Antennas (2 nd Edition) by John D. Kraus, McGraw Hill	1997		
		1005		
5.	Electromagnetic Waves and Radiating Systems (2 nd Edition)	1995		
	by E C Jordan and K G Balmain PHI			
	byE.C.Jordan and K.O.Dannam, I III			

Course Name:	SATELLITE COMMUNICATION
Course Code:	EC2312
Credits:	4
L T P:	3 1 0

COURSE OBJECTIVES: In this course the students will get the basic technical knowledge of orbital dynamics, subsystems used in space segment and ground segment, power and bandwidth requirement, effect of the transmission medium, other impairments and techniques to mitigate them, small satellites and navigational aspects.

S No	Lecture wise breakup	No. of lectures
1.	ORBIT MECHANICS A Brief History and Overview of Satellite Communications, Achieving a Stable Orbit, Describing the Orbit of a Satellite (GEO, MEO and LEO satellite systems), Locating the Satellite, Look Angle Determination, Orbital Perturbations, Orbit Determination, Placing Satellites into Geostationary Orbit, Orbital Effects in Communications Systems Performance.	8
2.	SPACECRAFT SYSTEMS AND LINK DESIGN Attitude and orbit control system, telemetry, tracking and command (TT&C), communications subsystems, transponders, spacecraft antennas. LINK DESIN: Basic transmission theory, noise figure and noise temperature, G/T ratio, CNR, CIR, ACI, IMI, Down link design, Up link design.	9
3.	TRANSMISSION ASPECTS Probability of Error in Digital Transmission, Digital Transmission of Analog Signals, Time Division Multiplexing, Packets, Frames and Protocols, Error Detection and Correction, Digital Modulation, BPSK, QPSK, QAM and Multiple Access, FDMA, TDMA, DAMA, CDMA.	8
4.	PROPAGATION EFFECTS Propagation Phenomena, Propagation Impairment Attenuation and Depolarization, Counter measures, Rain and Ice Effects, Rain Attenuation, Prediction, Figure of merit, total system performance	6
5.	VSAT SYSTEMS Use of Small Satellites, Low Throughput Mobile Communications Satellite Systems, VSAT Systems, Signal Formats, NGSO Satellite Systems, Packets and Protocols for NGSO Systems, Orbital Coverage and Frequency Considerations, Direct Broadcast Satellite Television and Radio, Home Satellite TV, Digital DBS-TV.	6
6.	SATELLITE INTERNET AND NAVIGATIONAL ASPECTS Geostationary Satellite Internet Access, Radio and Satellite Navigation, GPS Position Location Principles, GPS Codes and Frequencies, Satellite Signal Acquisition, GPS Signal Levels.	5

Course Outcomes: By the end of this course the students will be able to		
1.	Identify the communication satellite mechanics	
2.	Explain the satellite internal sub systems for communication applications	
3.	Explain the transmission errors and modulation techniques.	
4.	Design the power budget for satellite links	
5.	Describe various constellations of satellite and their applications	

Suggest	Suggested Books:				
Sr.No.	Name of Book/ Authors/ Publisher	Year of Publication / Reprint			
1.	Satellite communication (3 rd Edition) by Timothy Pratt, Charles W. Bostian, John Wiley & Sons Publication	2020			
2.	Satellite Communication, P. Banerjee, PHI	2017			
3.	Satellite Communications Systems Engineering (2ndEdition) by Wilbur Pritchard, HenriSuyderhoud, Pearson Education	2007			
4.	Communication satellite systems by J. Martin, PHI publication	2001			

Course Name	:	OPTICAL COMMUNICATION
Course Code	:	EC2313
Credits	:	4
LTP	:	3-1-0

By the end of this course, the students should be able to name the basic elements of optical fiber transmission link, describe fiber modes and different types of fibers. The student should also be able to summarize the various causes of signal degradation in optical fibers, explain the working of optical amplifiers and important parts at the transmitter (Semiconductor lasers/LEDs, modulators etc) as well as at the receiver sides (optical detector etc.) of the optical communications system, analyze and calculate the link power budget, describe the optical networks (FDDI,SONET/SDH) and operational principles of advanced multiplexing strategies.

—

1 3 1

	Total No. of Lectures – 42		
Lecture wise breakup Nu			
		of	
	OVERVIEW OF OPTICAL FIRER COMMUNICATIONS:	Lectures	
	Block Diagram of Ontical Communication System advantages of ontical fiber	0	
	communication basic structure of ontical fiber wavaguide ray theory		
1	transmission onticel fiber modes and configuration step index & graded index		
	fiber single mode fiber multi Mode fiber fiber moterials fiber febrication		
	SIGNAL DEGRADATION IN OPTICAL FIBER TRANSMISSION.	6	
	Introduction attenuation intrinsic & extrinsic absorption losses linear &	0	
2	nonlinear scattering losses bending losses distortion in ontical wave guide		
4	intramodal and intermodal dispersion. Power launching and coupling Source to		
	fiber power launching power calculation lensing schemes fiber to fiber joints		
	fiber splicing technique fiber connectors		
	OPTICAL TRANSMITTERS:	6	
3	Basic Concepts, Light Emitting Diodes, Semi-Conductor Lasers, DFB Lasers,		
5	Coupled Cavity semiconductor Lasers, Tunable Semiconductor Lasers, Vertical		
	Cavity Semiconductor Lasers, Laser Characteristics, Transmitter design.	5	
	OFFICAL RECEIVERS: Pasia concepta n n Dhoto Diodog n i n Dhoto Diodog Avalanche Dhoto Diodo	5	
4	MSM Photo detector, Desciver Design, Bassiver Noise, Noise machanism		
	NISW FIIOLO delector, Receiver Design, Receiver Noise, Noise mechanism,		
	Degradation Descriver Derformance		
	OPTICAL COMMUNICATION SYSTEM DESIGN.	3	
5	Point to point links, system considerations, link power budget, rise time budget.	5	
	NONLINEAR EFFECTS IN FIBER OPTIC LINKS:	4	
6	Concept of self-phase modulation, cross phase modulation, Raman scattering,		
Ŭ	Brillouin scattering four wave mixing, group velocity dispersion and soliton		
7	OPTICAL AMPLIFIERS.	Λ	
, í	Semiconductor optical amplifiers, EDFA, Raman amplifier.	-	
	OPTICAL NETWORKS:	6	
	Optical multiplexing techniques-WDM, DWDM, CWDM & CDMA, Network		
8	Topologies, FDDI Networks: - Frame and Token formats, Network operation,		
	SONET/SDH, SONET frame structure, SONET layers, operational principles of		
	WDM - Broadcast and Select WDM networks, Single hop networks, Wavelength		
	routed networks, Introduction to Optical Computing & Photonics.		

List of experiments		
1.	To calculate the numerical aperture of a single mode fiber.	
2.	To determine the loss occurring in optical fiber link due to macro-bending.	1
3.	To study the length dependence of attenuation in the given optical fibre at different wavelengths.	1
4.	To determine insertion loss and return loss of several connectors and return loss of PC and APC terminations.	2
5.	Measurement of insertion loss, directivity and back reflection/ return loss for a series of fibre optic components (i.e. coupler, WDM, isolator, circulator, DWDM Mux/Demux devices).	2
6.	Determination of isolation/ extinction ratios in various optical components.	1
7.	Examination of narrowband wavelength responses of a number of optical components.	1
8.	Investigation of temperature tuning of a Bragg grating.	1
9.	Measurement of light, voltage and current (LVI) characteristics of a DFB laser with operating temperature.	1
10.	To characterize Optical Add Drop Multiplexer in a WDM link.	1
11.	To calculate the attenuation-limited fibre length based on the power budget equation.	1
12.	Design and simulate a fibre optic system using a dispersion compensating fibre to reduce chromatic dispersion.	1
13.	To perform the Eye Diagram and BER analysis of the WDM system to observe the channel crosstalk.	1

Cour	Course Outcomes: By the end of this course, the students will be able to		
1	Classify the structures of Optical fiber and types.		
2	Discuss the channel impairments like losses, dispersion and non linear effects		
3	Classify the Optical sources and detectors and to discuss their principle.		
4	Explain various sections of optical transmitters and receivers and optical amplifiers		
4	Perform fiber-optic communication system engineering calculations, identify system tradeoffs, and apply this knowledge to modern fiber optic systems.		

Suggostod	Booker
Suggesteu	DUUKS.

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint
1	Optical Fiber Communication, McGraw -Hill ,3 rd Editionl,byGerd Keiser	2006
2	Fiber Optic Communication Systems by G.P. Agrawal, (4/e), Wiley, 2002.	2010
3	Optical Networks A practical perspective by Rajiv Ramaswami, Kumar N. Sivaranjan, 3 rd edition, Elsevier,	2009
4	Fiber-Optic Communications Technology by .Djafar K. Mynbaev, Lowell L. Scheiner, Pearson Education	2000
5	Optical Fiber Communications, Principles and Practice, Senior, PHI – 2 nd Edition.	2001

Course Name	:	WIRELESS COMMUNICATIONS (DEC)
Course Code	:	EC2314
Credits	:	4
LTP	:	3-0-2

By the end of this course, students should be able to have a broad overview of wireless communication technology, identify and explain path loss, shadowing and fading phenomena in wireless communication systems, evaluate capacity of wireless communication channel, can compare various diversity achieving schemes, and understand the contemporary technologies used in wireless communications like Orthogonal Frequency-Division Multiplexing (OFDM) and Spread spectrum techniques.

Total No. of Lectures – 42

Lecture wise breakup		Number of
	-	Lectures
	INTRODUCTION TO WIRELESS COMMUNICATIONS: History of Wireless	4
1	Communications, Wireless Vision, Technical Issues, Current Wireless Systems,	
-	Cellular Telephone Systems, Cordless Phones, Wireless Local Area Networks, Wide	
	Area Wireless Data Services, Broadband Wireless Access, Satellite Networks, Low-	
	Cost, Low-Power Radios: Bluetooth and ZigBee, Wireless Spectrum, Methods for	
	Spectrum Allocation, Spectrum Allocations for Existing Systems	
	PATH LOSS AND SHADOWING IN WIRELESS COMMUNICATIONS:	6
2	Radio Wave Propagation, Free-space path loss and path loss models, Shadow Fading,	
	Log-normal model for shadowing.	
	STATISTICAL MULTIPATH CHANNEL MODEL:	10
3	Small-Scale Multipath Propagation, Doppler Shift, Impulse Response Model of a	
-	Multipath Channel, Time Dispersion Parameters and Coherence Bandwidth, Doppler	
	Spread and Coherence Time, Flat fading, Frequency Selective Fading, Fast Fading,	
	Slow Fading, Rayleigh and Ricean Distributions, Clarke's Model for Flat Fading,	
	Spectral Shape Due to Doppler Spread in Clarke's Model, Transforms for	
	autocorrelation and scattering functions	
4	CAPACITY OF WIRELESS CHANNELS:	8
	Capacity in additive white Gaussian noise, Capacity of Flat Fading Channels: Channel	
	and System Model, Channel Side Information at Receiver, Channel Side Information	
	at Transmitter and Receiver, Capacity with Receiver Diversity, Capacity	
	Comparisons.	
	DIVERSITY:	7
5	Realization of Independent Fading Paths, Receiver Diversity: Selection Combining,	
	Threshold Combining, Maximal-Ratio Combining, Equal-Gain Combining,	
	Transmitter Diversity: Channel Known at Transmitter, Channel Unknown at	
	Transmitter – Alamouti Scheme.	
	MULTICARRIER MODULATION (OFDM):	4
	Data transmission using multiple carriers, multicarrier modulation with overlapping	
6	subchannels, Coding with interleaving over time and frequency, Discrete	
	implementation of multicarrier modulation: Orthogonal Frequency-Division	
	Multiplexing (OFDM), Review of Discrete Fourier Transform (DFT) and its	
	implementation, and Cyclic prefix, Peak-to-average power ratio, Frequency and timing	
	Offset in multicarrier systems.	2
7	SPREAD SPECTRUM TECHNIQUES:	5
,	Spread-spectrum principles, Direct-sequence spread spectrum (DSSS), DSSS System	
	Model, KAKE Receivers, Frequency-hopping spread spectrum (FHSS)	

List of Simulations & Experiments:		Number of Turns
1	Study of Log-normal distribution model	2
2	Simulation of Rayleigh and Ricean fading models	2
3	Visualize effects of frequency-selective fading	2
4	Implementing water-filling algorithm for calculating the capacity of a wireless channel	2
5	Implementing Alamouti space-time block code.	2
6	Implementing Direct-sequence spread spectrum (DSSS)	2
7	Implementing Frequency-hopping spread spectrum (FHSS)	2

Cou	Course Outcomes: By the end of this course the students will be able to		
1	Have a broad overview of wireless communication systems, i.e., hierarchy of wireless networks,		
	methods of spectrum allocation.		
2	Understand the concept of shadowing and fading in wireless communications.		
3	Mathematically model wireless communication systems for different fading characteristics, i.e., Flat,		
	Frequency Selective, Fast, and Slow fading characteristics.		
4	Derive the capacity of a flat-faded wireless channel under the assumptions of channel side information		
	at the receiver/transmitter.		
5	Appreciate various schemes of achieving diversity and get an introduction to space time block coding,		
	i.e., Alamouti Scheme.		
(Understand contemporary and widely used wireless communication techniques like Orthogonal		
0	Frequency-Division Multiplexing (OFDM) and Spread spectrum.		
-	Comfortably use MATLAB for designing models and implementing different techniques used in		
7	wireless communications.		

Sugges	Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year Publication/ Reprint	of	
1	Wireless communications, Andrea Goldsmith, 1 st edition, Cambridge University press	2009		
2	Wireless communication, Principles and Practice, T.S Rappaport. 2nd Edition, Pearson	2010		
3	Principles of Mobile Communication, Gordon L. Stüber, 4th edition, Springer	2017		

Course Name	:	ADVANCED DIGITAL COMMUNICATION
Course Code	:	EC2411
Credits	:	4
LTP	:	310

Course Objectives: By the end of this course the students should be able to understand the principles that underlie the analysis and design of digital communication systems. The objective of this course is to introduce the students to advanced topics in digital communication such and optimal receiver design for AWGN channels and bandlimited channels, probability of error analysis for different digital modulation schemes, carrier and symbol synchronization, and equalization.

	Total No. of L	ectures – 42
Lect	ure wise breakup	Number
	-	of
		Lectures
1	CHARACTERIZATION OF COMMUNICATION SIGNALS AND SYSTEMS Elements of digital communication system, Representation of Band pass and Low pass Signals, Energy considerations, Low pass representations of Band pass Systems, Representation of Band pass Stationary Stochastic Processes, Signal Space Representation, Orthogonal Expansions of signals (Gram-Schmidt Procedure), Memory less Digital Modulation Schemes, Power Spectral density of Linearly Modulated Signals.	10
	OPTIMUM RECEIVERS FOR ADDITIVE WHITE GAUSSIAN	12
2	NOISE CHANNEL	
	Implementation of the optimal receiver for AWGN channels (Correlation and Matched- Filter receiver), Probability of error of maximum likelihood detection, Optimal detection and error probability for bandlimited signaling (for ASK, PAM, PSK and QAM), Probability of Error for M-ary Orthogonal Signals, Probability of Error for Simplex Signals, Optimal detection in presence of Uncertainty: Noncoherent detection.	
3	CARRIER AND SYMBOL SYNCHRONIZATION Signal Parameter estimation: The Likelihood Function, Carrier recovery	10
•	and Symbol synchronization in signal demodulation; Carrier Phase	
	locked loop. Effect of additive noise on the phase estimate: Symbol timing	
	estimation: Maximum-likelihood timing estimation, non-decision-directed timing estimation	
	DIGITAL COMMUNICATION THROUGH BANDLIMITED	10
4	CHANNELS WITH EQUALIZATION	
	Characterization of band-limited channels, Signal design for band limited	
	Criterion) and with controlled ISL Optimum receiver for channels with ISL and	
	AWCN: Linear Equalization: Peak distortion criterion Mean square error (MSE)	
	criterion, Performance characterization of the MSE Equalizer.	

Cour	Course Outcomes: By the end of this course the student will be able to	
1	Explain digital communication system and digital modulation techniques.	
2	Analyze the representation of lowpass and bandpass signals and systems.	
3	Design the optimal receiver for AWGN channels and bandlimited channels.	
4	Analyze the probability of error for different digital modulation techniques.	
5	Explain various synchronization and equalization techniques used in digital	
	communication.	

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint
1	Digital communications (5 th Edition) by J. Proakis,MGH	2008
2	Digital Communications Fundamentals and Applications (2 nd Edition) by Bernard Sklar, Pearson Education.	2001
3	Multi-carrier Digital Communications: Theoryand Applications of OFDM (2 nd Edition) by A. R. S. Bahai, B. R. Saltzberg, M.Ergen, Springer	2004
4	Digital Communication (3 rd Edition) by Edward A Lee & David G Messerschmitt, Kluwer Academic Publishers	2003
5	Modern Wireless Communications by Simon Haykin and Michael Moher, Person	2004

Course Name	:	MOBILE AND CELLULAR COMMUNICATIONS (DEC)
Course Code	:	EC2412
Credits	:	4
LTP	:	302

By the end of this course, students should be able to familiarize with the evolution and basics of wireless communication technology, identify and explain the cellular concepts, like, frequency reuse, co-channel interference, cell splitting, and in-depth knowledge about the concept of handoff. The student should have an introduction to very-small-aperture terminal satellites and its applications in mobile communications.

	Total No. of Lectures	-42
Lectu	ıre wise breakup	Number of Lectures
	INTRODUCTION TO CELLULAR SYSTEMS: A basic cellular system,	3
1	performance criteria, uniqueness of mobile radio environment, operation of	
	cellular system, planning a	
	cellular system, analog& digital cellular systems.	
	CELLULAR WIRELESS COMMUNICATION SYSTEM: Second	5
2	generation cellular systems: GSM specification and air interface- specification	
	of various units, GSM Architecture, 2.5 G systems: GPRS/EDGE	
	specifications and features, 3G systems: UMTS	
	& CDMA 2000 standards and specifications.	-
	ELEMENTS OF CELLULAR RADIO SYSTEMS DESIGN: General	
3	description of the problem, Concept of frequency reuse channels, co-channel	
	interference reduction factor, desired carrier to interference ratio (C/I) for an	
	omni-directional antenna system, cell splitting, consideration of the	
	components of cellular systems.	
	INTERFERENCE: Introduction to co-channel Interference, real time co- channel interference, co-channel measurement design of antenna system	6
4	antenna parameter and their effects, diversity receiver in co-channel	
	interference, Equalization, Equalization in Communication Receiver, RAKE	
	Receiver.	6
	CELL COVERAGE FOR SIGNAL & TRAFFIC: General introduction,	0
_	Obtaining the mobile point to point model, propagation over water or flat open	
5	area, foliage loss, propagation near in distance, long distance propagation,	
	point to point prediction model characteristics, cell site, antenna heights and	
	signal coverage cells, mobile to mobile	
6	EDECLIENCY MANACEMENT AND CHANNEL ASSICNMENT.	5
U	FREQUENCI MANAGEMENT AND CHANNEL ASSIGNMENT.	5
	Channel Assignment definition and its types i a fixed	
	channel assignment non-fixed channel assignment traffic and channel	
	assignment	
	HANDOFFS. DROPPED CALLS : Need of handoffs, types of handoffs,	4
7	i.e., based on signal strength and carrier to interference ratio (C/I), Initiation,	
	delay and queuing of handoffs, Intersystem handoffs, dropped call rates & their	
	evaluation.	6
o	EAKIH SIAHUN AND VEKY-SMALL-APEKIUKE IEKMINAL	U
ð	SAIELLIIES (VSAIS): Spacecraft Structure, Primary Power, Various	
	Subsystem of a Saterine, Transmitter, Receivers, Components of Earth	
1	station, vSA1- type, vS1A uses in wiodile Communications.	

Serial Numb er	List of Experiments	No. of Turns
1	To study GSM Architecture and network topologies	1
2	To study and estimate call flow (Voice and Data)	1
3	To comprehend the intra-circle roaming functionality	1
4	To estimate, calculate and design link budget.	1
5	To do frequency planning of the network along with neighbor definition	1
6	To estimate and design concept of frequency reuse	1
7	Create a scenario to study the bottleneck of the transmission rate of a link	2
8	To study optimization strategies to improve grade of service	2
9	To estimate various types of interference.	2
10	To study the effect of fading and measure the fading margin of a received signal on spectrum analyzer	2

Cour	Course Outcomes: By the end of this course the students will be able to		
1	Explain the fundamental concepts and evolution of mobile communication systems.		
2	Learn cellular system design basics and frequency management techniques, especially the concept of frequency reuse, co-channel interference, cell splitting.		
3	Understand co-channel interference and describe interference reduction strategies, i.e., equalization.		
4	Determine the cell coverage area for different natural and man-made terrains		
5	Appreciate the concept of handoffs in mobile communication systems.		
6	Understand the working and design of very-small-aperture terminal satellites and their applications in mobile communications		

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint
1	Mobile Cellular Telecommunications; William, by C Y Lee. 2nd Edition McGraw Hill	2006
2	Wireless Digital Communications : Modulation and Spread Spectrum Applications, by Dr. Kamilo Feher. 2nd Edition, PHI	2015
3	Wireless communication, Principles &Practice, by T.S Rappaport. 1 st Edition, Pearson	2010
4	Digital Satellite Communication, by Tri T. Ha. 2nd Edition, McGraw Hill	2017

Course Name	:	MIMO WIRELESS COMMUNICATION (DEC)
Course Code	:	EC2413
Credits	:	4
	:	3-1-0

By the end of this course, students should be able to familiarize with the concept of spacetime diversity and its need, explain the advantages offered by Multiple-Input Multiple-Output (MIMO) wireless systems over single input single output (SISO) wireless systems, evaluate the capacity and error performance of a MIMO wireless system, and get familiar with the concept of receiver and transmitter diversity and space-time block codes (STBC)

Total No. of Lectures – 42

Lecture wise breakup		Number
	•	of
		Lectures
1	REVIEW OF MATRIX ALGEBRA:	6
	Traces and determinants, Moore–Penrose pseudo-inverse, Kronecker	
	Product, Singular value decomposition and Eigen value decomposition of	
	matrices, Hadamard Inequality,	4
	INTRODUCTION TO SPACE-TIME DIVERSITY:	4
2	Space-time diversity and its need, Diversity analysis in one transmit	
	antenna and two receive antenna and two transmit antenna and one receive antenna 2 ×2 (Multiple Input Multiple Output) MIMO axample over a flat	
	fading channel	
	CAPACITY OF MULTIPLE.INPUT MULTIPLE.OUTPUT (MIMO) WIRELESS	10
2	CHANNELS [,]	10
3	Additive White Caussian Noise (AWCN) Channel Canasity Resources of the AWCN	
	Additive white Gaussian Noise (AwGN) Channel Capacity, Resources of the AwGN	
	Channel (Power and Bandwidth), Capacity of linear time-invariant Gaussian	
	channels (Single Input Multiple Output (SIMO) Channel, Multiple Input Single	
	Output (MISO) Channel), Capacity of the MIMO channel (Water-filling algorithm),	
	Concept of Ergodic and Outage Capacity.	
	ERROR PROBABILITY ANALYSIS OF MIMO:	12
4	Different types of detectors (Maximum Likelihood, Minimum Mean Square Error,	
-	Zero-Forcing), Error Probability Analysis for SISO Channels, Error Probability	
	Analysis for MIMO Channels, Pairwise Error Probability and Union Bound,	
	Coherent Maximum-Likelihood Detection, Detection with Imperfect Channel	
	Knowledge, Joint ML Estimation/Detection	10
	KECEIVE AND I KANSMIT DIVERSITY AND INTRODUCTION	10
5	TO SPACE-TIME CODING: Dessiver diversity over flat fading channels. Ontimal Deemforming with	
	Channel Known at Transmitter, Ashioving Transmit Diversity. The MI	
	Detector Minimizing the Conditional Error Probability Minimizing the	
	Average Error Probability Space Time Coding Alemouti's Space Time	
	Code Space Time Block Coding Linear Space Time Block Codes (STPC)	
	Code, Space-Time Block Coding, Linear Space-Time Block Codes (STBC)	

Cour	se Outcomes: By the end of this course the students will be able to
1	Appreciate the matrix analysis forming the foundations of Multiple-Input Multiple-Output (MIMO) wireless communication systems.
2	Understand the concept of Space-Time diversity and its need for MIMO wireless communication systems.
3	Evaluate the capacity of Single Input Multiple Output (SIMO), Multiple Input Single Output (MISO), MIMO wireless communication systems and understand the concept of ergodic and outage capacity.
4	Understand the working principle of different types of detectors and evaluate the probability of error for MIMO wireless communication systems.

5	Familiarize with notions of receive and transmit diversity and have a basic idea abou Space-Time Block Coding

Suggested Books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint		
1	Space Time Block Coding for Wireless Communications by Erik G. Larsson and Petre Stoica, 1 st edition, Cambridge University Press	2013		
2	Fundamentals of Wireless Communication, by David Tse and Pramod Viswanath, Cambridge University Press	2005		
3	Foundations of MIMO Communication, by Robert W. Heath Jr. and Austin Angel Lozano, 1st edition, Cambridge University Press	2018		

VLSI Design Pool

Course Name	:	Electronic Devices Fabrication
Course Code	:	EC2231
Credits	:	4
LTP	:	302

To provide knowledge of device physics/operation, technologies and issues in nanoscale CMOS, other emerging devices and futuristic material-based interconnects. Students earn the basic understanding of nano electronics and followed by the advanced understanding of the nano-micro fabrication techniques.

Total number of Lectures - 42

Lecture wise breakup		Number of Lecture
1	EMERGING NANOSCALE DEVICES and INTERCONNECTS History of semiconductor devices, Moore's law, feature size and minimum feature size trend. Si and hetero-structure nanowire MOSFETs, carbon nanotube MOSFETs, Tunnel FET, quantum wells, quantum wires and quantum dots, Resonant tunnelling devices, Single electron transistors, Junction-less transistors, Spintronics devices. Optical interconnects, Superconducting interconnects, Nanotechnology interconnects, Silicon nanowires, Carbon nanotube (CNT) and Graphene nanoribbon (GNR) interconnects, performance comparison of CNTs, GNRs and copper interconnects.	8
2	Material Preparation Material properties, crystal structure, lattice, basis, planes, directions, angle between different planes, phase diagram and solid solubility, Crystal growth techniques, Epitaxy, Clean room and safety requirements. Oxidation: wet and dry oxidation, Deal-Grove model, Diffusion process, Ion implantation, modelling of Ion implantation, statistics of ion implantation, rapid thermal annealing, SIMS.	10
3	NANO-FABRICATION Epitaxy and Thin Film Deposition, Film growth: PVD Processes Evaporation (Thermal and e-beam), Chemical Growth Fundamentals of CVD growth Processes, Modern variants: MOCVD, PECVD and ALD Spin Coating.	7
4	LITHOGRAPHY AND ETCHING TECHNIQUES Optical lithography, resolution and depth of focus, resist processing methods and resolution enhancement, advanced lithography techniques for nanoscale patterning, Wet etching, selectivity, isotropy and etch bias, common wet etchants, orientation dependent etching effects; Introduction to plasma technology, plasma etch mechanisms, selectivity and profile control plasma etch chemistries for various films, plasma etch systems.	10

5	CHARACTERISATION TECHNIQUES	7
	Morphological characterisation: Raman, XRD, SEM, AFM; Electrical	
	Characterisation: Electrical measurement techniques, two probe and four probe	
	measurement technique; RF characterisation	
		1

List of Experiments:		Number of
		Turns
1	Thin film metal deposition using E-beam Evaporation System	2
2	Forming Electrode pattern using E-beam/thermal vaporization technique	2
3	Material synthesis and composites formation	2
4	Nanomaterial synthesis using hydrothermal technique	2
5	Deposition of compound metal oxides using sol-gel/spin coating technique	2
6	Measurement of Electrical properties of thin film electronic device	2
7	Measurement of junction characteristics of fabricated thin film semiconducting	3
	diodes such as PN, Schottky, etc.	

Course Outcomes: Upon successful completion of this course, the enrolled students will be gaining the following knowledge, skills and competences:

1	An in-depth knowledge of CMOS Scaling
2	Futuristic material-based interconnects such GNRs, CNTs
3	An in-depth knowledge of thin film deposition techniques
4	Understand operation of different fabrication tools and etching techniques
5	Characterize and study the properties of material

Suggested Books :		
Sr.N o.	Title of Book/Name of Author(s)/Publisher	Year of Publication/Reprint
1	Sze, S.M., "VLSI Technology", 4th Ed., Tata McGraw-Hill	1999
2	Chang, C.Y. and Sze, S.M., "ULSI Technology", McGraw-Hill	1996
3	Nano: The Essentials: Understanding Nanoscience and Nanotechnology by T. Pradeep,McGraw Hill Professional	2008
4	Gandhi, S. K., "VLSI Fabrication Principles: Silicon and Gallium Arsenide", John Wiley and Sons	2003

Course Name	:	HDL BASED SYSTEM DESIGN
Course Code	:	EC2232
Credits	:	4
LTP	:	3-0-2

By the end of this course, the students should be able to demonstrate the designing of asynchronous logic design and FSMs, identify and define the syntax and various constructs of Verilog HDL language and programming using Verilog HDL. The student should also be able to design the digital logic using various programmable logic devices.

	Total No. o	f Lectures: 42
Lecture wise breakup		No. of
		Lectures
1.	BASIC VERILOG ELEMENTS:	
	Lexical Conventions, Modules, Instances, Design Blocks, Stimulus Blocks, Data	(6)
	Types, Compiler Directives, Ports, Hierarchical Names, Tasks and Functions.	
2.	MODELING IN VERILOG HDL:	
	Gate-Level Modelling: Gate Types (And/ Or Gates, Buf/ Not Gates, Bufif/ Notif	(10)
	Gates), Gate Delays (Rise, Fall and Turn-Off Delays, Min, Max, and Typical	
	Delays). Data-Flow Modelling: Continuous Assignments, Delay Specification,	
	Expressions, Operators, Operands, Operator Types. Behavioural modelling:	
	Structured Procedures (initial and always), Procedural Assignments (Blocking and	
	Non-Blocking Statements), Timing Controls, Conditional Statements, Multi-way	
	Branching, Loops, Sequential and Parallel Blocks. Generate Blocks. Switch-Level	
	Modelling: Switch modelling Elements.	
3.	ADVANCED FEATURES OF VERILOG HDL:	
	Procedural Continuous Assignments, Overriding Parameters, Conditional	(8)
	Compilation and Execution, Time Scales, Useful System Tasks, Timing and Delays	
	(Delay Model Types, Path Delay modelling, Timing Checks, Delay Back-	
	Annotation), User-Defined Primitives (Basics of UDPs, Combinational UDPs,	
	Sequential UDPs, UDP Shorthand Symbols. Programming Language, Logical	
	Synthesis: Introduction and Impact of Logic Synthesis, Verilog HDL Synthesis	
4.	INTRODUCTION TO SYSTEM VERILOG	
	Introduction, data types, arrays, structures and unions, procedures and functions	(8)
_		(10)
э.	MODELING IN SYSTEM VERILOG	(10)
	Finite state machine modeling, Design merarchy, interfaces, behavioral and transaction level modeling. Case study	
	transaction level modeling, Case study	

List of Simulations & Experiments:	Number of Turns
1. Write Verilog code to realize all the logic gates	1
 2. Write a Verilog program for the following combinational designs a. 2 to 4 decoder b. 8 to 3 (encoder without priority & with priority) c. 8 to 1 multiplexer. d. 4 bit binary to gray converter 3. e. Multiplexer, de-multiplexer, comparator. 	1
 Write a VHDL and Verilog code to describe the functions of a Full Adder us three modeling styles. 	sing 1
5. Write a Verilog code to model 32 bit ALU	1
6. Develop the Verilog code for the following flip-flops, SR, D, JK and T.	1

7. Design a 4 bit binary, BCD counters (Synchronous reset and Asynchronous	1
reset) and "any sequence" counters, using Verilog code.	
8. Write HDL code to display messages on an alpha numeric LCD display	1
9. Write HDL code to control speed, direction of DC and Stepper motor.	1
10. Write HDL code to interface Hex key pad and display the key code on seven	1
segment display.	
11. Write HDL code to generate different waveforms (Sine, Square, Triangle,	1
Ramp etc.,) using DAC - change the frequency.	
12. Write HDL code to simulate Elevator operation.	1
-	

Course Outcomes: By the end of this course, the students will be able to	
1.	Design asynchronous digital circuits.
2.	Identify and code the digital modules using different Verilog HDL modeling styles.
3.	Construct various digital logic circuits by using advanced features of Verilog HDL language.
4.	Implementation of synthesizable circuits and verification using test benches.

Sugg	Suggested Books:				
Sr.	Name of Book/Authors/Publisher	Year of			
No.		Publication			
		/Reprint			
1.	Verilog HDL: A Guide to Digital Design and Synthesis, S. Palnitkar, Prentice Hall	2003			
	NJ, USA				
2	Switching and Finite Automata Theory, Zvi Kohavi and Niraj K, Cambridge	2010			
	University Press, Third Edition.				
3	'Circuit design with VHDL' by Voleni A Pedroni, MIT Press.	2011			
4.	System Verilog For Design: A Guide to Using SystemVerilog for Hardware	Latest			
	Design, Stuart Sutherland, Simon Davidmann, Peter Flake, Springer Science	edition			
5.	A SystemVerilog Primer, by J. Bhasker	Latest			
		edition			

Course Name	:	POWER ELECTRONICS
Course Code	:	EC2233 Pre-requisite: Electronic devices and circuits
Credits	:	4
LTP	:	310

The objective of this course is to understand and acquire knowledge about various power semiconductor devices and to prepare the students to analyze and design different power converter circuits.

Total No. of Lecture		s – 42
Lectu	re wise breakup	Number of Lectures
1	POWER SEMICONDUCTOR DEVICES: Power semiconductor devices their symbols and static characteristic, characteristics and specifications of switches, type of power electronic circuits, Thyristor operation, V-I characteristic, two transistor model, methods of turn-on operation of GTO, MCT and TRIAC, protection of devices, series and parallel operation of thyristors, commutation techniques of thyristor.	10
2	DC-DC CONVERTORS: Principles of step-down chopper, step down chopper with R-L load, principle of step-up chopper, and operation with R-L load, classification of choppers.	6
3	PHASE CONTROLLED CONVERTERS: Single phase half wave-controlled rectifier with resistive and inductive loads, effect of freewheeling diode, single phase fully controlled and half controlled bridge converters. Performance parameters, three phase half wave converters, three phase fully controlled and half controlled bridge converters, Effect of source inductance, single phase and three phase dual converters.	10
4	AC VOLTAGE CONTROLLERS: Principle of on-off and phase controls, single phase ac voltage controller with resistive and inductive loads, three phase ac voltage controllers (various configuration and comparison). CYCLO CONVERTERS: Basic principle of operation, single phase to single phase, three phase to single phase and three phase to three phase cyclo converters, output voltage equation.	10
5	INVERTERS: Single phase series resonant inverter, single phase bridge inverters, three phase bridge inverters, introduction to 120° & 180° mode of operation, voltage control of inverters, harmonics reduction techniques, single phase and three phase current source inverters.	6

Course Outcomes: By the end of this course, the students will be able to:				
1	Analyze various single phase and three phase power converter circuits and understand their applications			
2	Identify basic requirements for power electronics based design application.			
3	Understand the use of power converters in commercial and industrial applications.			

Suggested Books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd.	2009		
2	JP Agrawal, "Power Electronic Systems: Theory and Design", Prentice Hall, New York, NY, USA	2001		
3	PS Bimbhra, "Power Electronics", Khanna Publication	2008		
4	M.D. Singh, K.B.Khanchandani, Power Electronics, Tata McGraw Hill Publishing company limited	2008		
5	P.C. Sen, Power Electronics, Tata Mcgraw Hill Publishing company limited	1987		

Course Name	:	DIGITAL VLSI DESIGN	
Course Code	:	EC 2234 (Pre-requisite: Electronic devices and circuits)	
Credits	:	4	
L T P	:	3-0-2	
Course Objectives:			

By the end of this course, the students should be able to explain the MOS physics and its scaling effects, describe the fabrication process and mask designing of VLSI circuits. The students should also be able to design the basic CMOS circuits like inverters, combinational and sequential circuit, classify the static and dynamic behavior of CMOS circuits and compare the operation of semiconductor memories.

Total No. o		
Lecture wise breakup		
		Lectures
1.	MOSFET SCALING AND ITS EFFECTS	(4)
	MOSFET Short Channel Effects, Geometric Scaling Theory and its effects- Full-	
	Voltage Scaling, Constant-Voltage Scaling.	
2.	FABRICATION AND LAYOUT OF CMOS INTEGRATED CIRCUITS:	(4)
	Overview of Integrated Circuit Processing - Oxidation, Photolithography, Self-	
	Aligned MOSFET, Isolation and Wells – LOCOS, Trench Isolation, CMOS Process	
	flow, Stick Diagram and Layout – MOSFET Dimensions, Design Rules, Latch-up.	
3.	CMOS INVERTERS:	(10)
	CMOS Inverter, switching threshold and noise margin and their evaluation, static	
	and dynamic behavior, switching characteristics- delay time calculation, Power,	
	Energy and Energy-delay calculations, Interconnects: Resistance, Capacitance and	
	inductance Estimation, Delay and crosstalk	
4.	CMOS COMBINATIONAL LOGIC GATES:	(8)
	Complementary CMOS, Ratioed logic, Pass Transistors logic, Transmission Gate,	
	CVSL, Dynamic logic: basic principle, Speed and Power Dissipation of Dynamic	
	Logic, Issues in Dynamic Design, Cascading Dynamic Gates	
5.	SEQUENTIAL MOS LOGIC CIRCUITS:	(8)
	Behavior of Bistable Elements, SR latch circuits, Clocked latch and Flip-flop	
	Circuits, CMOS D-latch and Edge triggered FF, Dynamic Transmission-Gate Edge-	
	triggered Registers, NORA-CMOS—A Logic Style for Pipelined Structures	
6.	SEMICONDUCTOR MEMORIES:	(8)
	Non-volatile and volatile memory devices, flash memories, SRAM Cell Design,	
	Differential Sense Amplifiers, DRAM Design, Memory peripheral circuitry, power	
	dissipation in memories	

List	No. of turns	
1.	Familiarization with Simulation Software for schematic and layout entry, circuit	2
	simulation	
2.	DC transfer Characteristics of Inverters, Transient response, Calculating	2
	propagation delays, rise and fall times, power dissipation	
3.	Implementation of Boolean logic using S-Edit for static logic.	2
4.	Implementation of Boolean logic using L-Edit for static logic, Design Rule Check	2
	(DRC), Electrical Rule Check (ERC) generation of layout and extraction.	
5.	Design of flip-flops, counters, registers using HDL	2
6.	Design of state machines using HDL at various abstraction levels	2
7.	Creating test benches, Synthesis using FPGA kits	2

Cou	Course Outcomes: By the end of this course, the students will be able to			
1.	Describe the Physics of MOS device.			
2.	Classify the CMOS process technology and layout design.			
3.	Identify the characteristics of CMOS circuits and will be able to design the CMOS circuits using VLSI CAD tools.			
4.	Compare between static and dynamic CMOS logic circuits.			
5.	Classify the various semiconductor memories.			

Sugg	Suggested Books:			
Sr.	Name of Book/Authors/Publisher	Year Of		
No.		Publication		
		/Reprint		
1.	CMOS Digital Integrated Circuits – Analysis and Design, S. Kang and Y.	2008		
	Leblebici, Tata McGraw Hill 3rd ed.			
2.	CMOS VLSI Design: A Circuits and Systems Perspective, N.H.E. Weste and K.	1998		
	Eshraghian, Addision Wesley 2nd ed.			
3.	Digital Integrated Circuits - A Design Perspective, J.M. Rabaey, A.P.	2007		
	Chandrakasen and B. Nikolic, Pearson Education 2nd ed.			
4.	CMOS Circuit Design, Layout and Simulation, R.J. Baker, H. W. Lee, and D. E.	2004		
	Boyce, Wiley - IEEE Press 2nd ed.			

Course Name	:	PCB Circuit Design
Course Code	:	EC2331
Credits	:	4
L T P	:	302

The main aim of this course is to make students learn different PCBs for analog, digital, biomedical, wearable electronics, high frequency and power electronics applications. They will learn the electronic manufacturing and packaging aspects with the electrical, mechanical and thermal design considerations required for optimize designing of PCB

	Total No. of Lectures		
Lectu	re wise breakup	Number of	
		Lectures	
1	PCB Fundamentals:	8	
1	PCB Advantages, components of PCB, Electronic components, IC's, Surface Mount Devices		
	(SMD). Classification of PCB - single, double, multilayer and flexible boards, Manufacturing of		
	PCB, PCB standards.		
	Technology OF PCB:	10	
	Design automation, Design Rule Checking; Exporting Drill and Gerber Files; Drills; Footprints		
2	and Libraries Adding and Editing Pins, copper clad laminates materials of copper clad laminates,		
-	properties of laminates (electrical & physical), types of laminates, soldering techniques. Film		
	master preparation, Image transfer, photo printing, Screen Printing, Plating techniques etching		
	techniques, Mechanical Machining operations, Lead cutting and Soldering Techniques, Testing		
	and quality controls.	0	
	Overview of Electronic Systems Packaging:	8	
	Definition of a system and history of semiconductors, Products and levels of packaging,		
3	Packaging aspects of handheld products, Definition of PWB, Basics of Semiconductor and		
	Process flowchart, Water fabrication, inspection and testing, Water packaging; Packaging		
	evolution; Chip connection choices, Wire bonding, TAB and flip chip		
	Schematic & Layout Design:	8	
4	Schematic diagram, General, Mechanical and Electrical design considerations, Placing and		
	Mounting of components, Conductor spacing, routing guidelines, heat sinks and package		
	density, Net list, creating components for library, Tracks, Pads, Vias, power plane, grounding.		
	PCB design for EMC compliance:	8	
5	Return path discontinuities-mixed signal PCB layout, Filtering circuit placement, decoupling		
	and bypassing, Electronic discharge protection, Thermal management		
	Experiments Design and development of PCBs using different simulator tools and prototyping.		

List of Experiments

List	List of Experiments:			
Sr. No.	Experiments	No. of turns		
1	Types of PCBs	1		
2	Different materials for PCBs	2		
3	Components and their types (SMD), through hole, Vias	3		
4	Software for PCB design: Altioum Designer software (student version) or KiCAD (open source) or Autodesk Eagle or ORCAD PCB design professional	6		
5	Development of PCB Board	2		

Course Outcomes: By the end of the course, the student must be able to:			
1	Learn electronic manufacturing and packaging aspect.		
2	Understands the electronics packaging including package styles or forms, hierarchy and methods of		
	packaging necessary for various environments.		
3	Understand the materials requirement and different optimization process of PCB design.		
4	Design and develop PCB with MSI circuits for different applications.		

Sugg	Suggested Books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint			
1	Fabricating Printed Circuit Boards, Jon Varteresian, Newnes (Elsevier)	202			
2	Printed circuit board design ,fabrication assembly and testing, R. S. Khandpur, Tata Mc Graw Hill	2005			
3	EMC and Printed circuit board, Design theory and layout Made Simple, Mark I Montrose, Wiley-IEEE Press	2000			
4	Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging, Xing-Chang Wei, CRC Press	2017			
5	Fundamentals of Microsystems Packaging, Rao R. Tummala, McGraw Hill, NY	2001			
6	Introduction to System-on-Package: Miniaturization of the Entire System, Rao R Tummala & Madhavan Swaminathan, McGraw Hill	2008			
7	K. Mitzner Complete PCB Design Using OrCad Capture and Layout, Elsevier,	2011			
8	Printed circuit Board Design and technology, Walter C. Bosshart, Tata Mcgraw Hill	1984			
9	Making Printed Circuit Boards, J. Axelson, TAB/McGraw Hill,	1993			
10	Recent Published research papers				

Course Name	:	FOUNDATIONS OF VLSI CAD
Course Code	:	EC2332
Credits	:	4
L T P	:	310

By the end of this course students should be able to explain the fundamentals of computer aided design tools for the modeling, design, analysis, test and verify digital VLSI systems. This course may also help the students to develop the algorithms as well as the working of the VLSI CAD software.

Total No. of Lecture		s – 42
Lectu	re wise breakup	Number of
		Lectures
1	LOGIC DESIGN ALGORITHMS:	7
1	SOP, POS minimization, Petrick's Method, Branch and Bound method, Dynamic	
	Programming, Divide-Conquer, Greedy Algorithm based approach, Binary Design Diagram.	
	Set covering problem solutions like Quine-McCluskey Algorithm, Iterated	
	Consensus Method	
	INTRODUCTION TO VLSI PHYSICAL DESIGN AND LAYOUT COMPACTION:	10
	Introduction to VLSI Physical Design: Physical Design Automation, VLSI Design Cycle,	
2	New Trends in VLSI Design Cycle, Design Styles. VLSI Physical Design Automation:	
-	Physical Design, Physical Design Cycle, VLSI Design Automation.	
	Compaction Informal Problem Formulation Graph Theoretical Formulation Maximum	
	Distance Constants Algorithms for Constant Graph Compaction: A Longest Path Algorithm	
	for DAGs. The Longest Path in Graphs with Cycles. The Bellman-Ford Algorithm.	
	Discussion: Shortest Paths, Longest Paths and Time Complexity	
	PLACEMENT, PARTIONING & FLOOR PLANNING:	10
3	Placement and Partitioning: Circuit Representation, Wire-length Estimation, Types of	
-	Placement Problems, Placement at Various Levels, Design-Style specific Placement,	
	Placement Algorithms: Constructive Placement, Iterative Improvement. Partitioning: Circuit	
	Partitioning, Hierarchical Partitioning, Partition Levels, Problem Formulation, Classification	
	of Partitioning Algorithms, The Kernighan-Lin Partitioning Algorithms Electric Planning: Electric planning, Concepts, Terminology, and Electric plan. Pentasentation	
	Hierarchical Design Dead Spaces Design-Style Specific Floor Planning Ontimization	
	Problems in Floor Planning, Slicing and Non-Slicing Floor-plans Shape Functions and	
	Floor-plan Sizing	
	ROUTING:	7
4	Types of Local Routing Problems, Area Routing, Channel Routing: Channel Routing	
-	Models, The Vertical Constant Graph, Horizontal Constants and the Left-edge Algorithm,	
	Channel Routing Algorithms, Global Routing: Standard-cell Layout, Building-blockLayout and	
	Channel Ordering, Algorithms for Global Routing: Taxonomy of VLSI Routers, Design-Style	
	Specific Routing	
5	HIGH LEVEL SYNTHESIS:	8
	Data flow Graphs, Hardware Optimization, Task Scheduling, Technology Mapping	

Cours	Course Outcomes: By the end of this course the students will be able to		
1	Establish comprehensive understanding of the various phases of CAD for digital electronic systems,		
2	Simulate digital logic to physical design, including test and verification.		
3	Demonstrate knowledge and understanding of fundamental concepts in CAD and to establish capability for		
3	CAD tool development and enhancement.		

Sugg	Suggested Books:					
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint				
1	K. Hoffman and R.E. Kunze, Linear Algebra, Prentice Hall (India)	1986				
2	Logic Synthesis and Verification by Gary. Hatchel	Latest				
		edition				
3	S.H. Gerez, "Algorithm for VLSI Design Automation", John Wiley & Sons	2002				
4	N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers	2002				

Course Name	:	ANALOG VLSI DESIGN
Course Code	:	EC2333
Credits	:	4
LTP	:	3-0-2
Course Objective		

At the end of this course, the student should become aware of device modeling, various types of analog systems, CMOS amplifiers and op Amps. The students shall become familiarize with various analysis and simulation techniques.

Total No. of Lectures - 42				
Lectu	Lecture wise breakup			
1.	INTRODUCTION:	(6)		
	Basics of CMOS, CMOS Capabilities and Limitations and CMOS Transistors and Logic.			
	Analog IC Design and Analog Signal Processing. Overview of the VLSI technologies,			
	VLSI Circuits and Analog IC Design Fundamentals, Analog layout techniques			
2.	CMOS DEVICE MODELLING:	(6)		
	Simple MOS Large-Signal Model, Other MOS Large-Signal Model Parameters, Small			
	Signal Model for MOS Transistor, Subthreshold MOS Model, Measurement of MOSFET			
	Parameters- Diode Models: DC- Small Signal and High Frequency Model, DC Small			
	Signal and High Frequency BJT Model- Measurement of BJT Model Parameters.			
3.	VLSI CIRCUIT DESIGN:	(6)		
	VLSI Circuits Design Theory, Process overview, Transistor device model, Circuit			
	characterization. Technology libraries Overview. Pre-layout parasitics estimation. Post			
	layout simulation techniques. VLSI Circuit Schematics and Simulation EDA Tool Flow.			
4.	ANALOG IC DESIGN:	(7)		
	Analog IC Design Theory, Analog IC (CMOS) Detailed Design Flow, Active/Passive			
	devices for Analog VLSI Design. Analog CMOS Subcircuits: MOS Switch, MOS			
	Diode/Active Resistor, Current Sinks and Sources, Current Mirrors, Current and Voltage			
	References, Bandgap Reference.			
5.	CMOS AMPLIFIERS:	(5)		
	Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output			
	Amplifiers, High-Gain Amplifier Architectures.			
6.	CMOS OPERATIONAL AMPLIFIERS:	(8)		
	Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps			
	and their Power Supply Rejection Ratio, Cascode Op Amps, Buffered Op Amps, High			
	Speed/Frequency Op Amps, Differential Output Op Amps, Micro power Op Amps, Low			
	Noise Op Amps, Low Voltage Op Amps.			
7.	ANALYSIS AND SIMULATION TECHNIQUES:	(4)		
	Different types of Analysis and Simulation techniques, Analog IC Schematics and			
	Simulation EDA.			

List o	of Simulations & Experiments:	Number of Turns
1.	To study analog layout constraints. Layout, design and analysis of basic analog building blocks	3
2.	Design and analysis of basic and cascode amplifier.	1
3.	Design and analysis of basic current sink and by using negative feed back resistor	1
4.	Design and analysis of cascode current sink and positive feed back boot strap current sink.	1
5.	Design and analysis of simple current mirror and cascode current mirror.	1
6.	Design and analysis of operational transconductance amplifier.	2
7.	Design and analysis of Analog to Digital converter using CMOS technology	2

Co	Course Outcomes: By the end of this course, the students will be able to		
1.	Explain the concepts of analog design.		
2.	Design various analog systems including CMOS amplifiers, op Amps, and switched capacitor circuits.		
3.	Describe different types of Analysis and Simulation techniques.		

Suggested books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publica tion/Re print		
1.	Allen, Phillip E. & Holberg, Douglas R. "CMOS Analog Circuit Design" Oxford University Press	2002		
2.	Kang S.M, Leblebici Y, "CMOS Digital Integrated Circuits : Analysis and Design" Tata McGraw Hill, 3rd ed.	2006		
3.	J. Baker "CMOS: Circuit Design, Layout, and Simulation" 2nd Edition, Wiley IEEE Press	2007		
4.	B. Razavi, "Design of Analog CMOS Integrated Circuits" McGraw Hill	2004		

Course Name	:	FPGA & ASICs
Course Code	:	EC2334
Credits	:	4
L T P	:	3-1-0

At the end of this course, students should have the knowledge of digital design techniques using field programmable gate arrays (FPGAs), FPGA architecture, digital design flow using FPGAs, and other technologies associated with field programmable gate arrays.

101	al No. of Lectures - 42	
Lecture wise breakup		No. of
		Lectures
1.	INTRODUCTION:	(10)
	VLSI Design Flow, Design Hierarchy, Structured Design Strategies, VLSI Design Styles,	
	Chip Design Options, FPGA Design Flow, Role of FPGAs, FPGA Types, FPGA vs	
	Custom VLSI, ASIC Design Flow, Type of ASIC, Full custom ASIC, Gate Array Based	
	ASIC and Types of Arrays, Standard Cell Based ASIC, Timing and Electrical	
	Characteristics, Power Dissipation, Case Studies and Economics of ASIC	
2.	PROGRAMMABLE LOGIC DEVICES:	(4)
	Introduction, Evolution, PROM, PLA, PAL, GAL, Applications, Design Flow,	
	Programmable Interconnections	
3.	FUNDAMENTALS OF FPGA:	(8)
	A Simple Programmable Function, Fusible Link Technologies, Anti-Fuse Technologies,	
	Static RAM based Technologies, E-PROM, EE-PROM, Flash Based Technologies,	
	Permanently Programmed FPGAs, Chip I/O, Circuit Design of FPGA fabrics.	
4.	FPGA ARCHITECTURES:	(5)
	Fine, Medium-Grained, Coarse-Grained, MUX and LUT Based Design, CLBs, LABs and	
	Slices, Fast-Carry Chains, Embedded RAMs, Embedded Multipliers, Adders, MACs	
	Embedded Processor Cores, Clock Trees and Clock Managers, General Purpose I/Os,	
	Gigabit Transceivers, Hard IP, Soft IP and Firm IP, System Gates versus Real Gates.	
5.	CONFIGURING FPGA:	(4)
	Configuration files, Configuration Ports, JTAG in brief, Programming using JTAG port.	
6.	ASIC LIBRARY DESIGN:	(6)
	Transistor as Resistor, Transistor Parasitic Capacitance, Logical Effort, Predicting Delay,	
	Logical Area, Logical paths, multistage cells, Optimum Delay, Library Cell Design.	
7.	LOGICAL SYNTHESIS AND DESIGN TOOLS:	(5)
	Physical Design Compilation, Simulation, and Implementation, Design Flow, Tools for	
	Simulation and Synthesis, Case Studies based on designing and synthesis of various digital	
	systems.	

Course Outcomes: By the end of this course student will be able to:		
1.	Explain various FPGA architectures.	
2.	Design Digital Circuits using field programmable gate arrays.	
3.	Identify Various Design Tools.	
4.	Explain various Programmable Logic Devices.	

Suggested Books:

Sr. No.	Name of the book/authors/ publisher	Year of
		publication/reprint
1	Design Warriors Guide to FPGA by Clive Max, Elsevire.	2004
2	Verilog HDL: A Guide to Digital Design and Synthesis, S. Palnitkar, Prentice Hall NJ, USA	2003
3	'Circuit design with VHDL' by Voleni A Pedroni, MIT Press.	2011
4	FPGA- Based System Design, Wayne Wolf, Pearson Education, LPE 1st Indian Edition	2000
5	'Digital design Principles and Practices' by John F. Wakerly, Prentice hall	2006
6	Richard C. Dorf "Field Programmable Gate Arrays" John Wiley & Sons	1995
7	Michad John, Sebastian Smith "Application Specific Integrated Circuit", Pearson Education, LPE.	2006

Course Name	:	NANOTECHNOLOGY
Course Code	:	EC 2431
Credits	:	4
LTP	:	310

Course Objective: By the end of this course students should be able to describe the evolution and basics of nanotechnology, explain the various synthesis and nanofabrication process and their applications. Total number of Lectures - 42

Lecture wise breakup		Number of Lecture
1	INTRODUCTION TO NANOTECHNOLOGY AND NANO MATERIALS History, ethical issues, applications in different fields, bottom up and top down approaches, Introduction to Zero, One and Two Dimensional Nanostructures, Quantum devices: Resonant tunneling diode, Coulomb Blockade, Single Electron Transistor.	10
2	NANOMATERIAL SYNTHESIS TECHNIQUES Physical methods: ball milling, Atomic Layer Deposition, Molecular beam epitaxy, spray pyrolysis, Chemical Methods: Sol gel, self-assembly, Chemical Vapor depositions, Oxidation and Nitridation, template manufacturing, Carbon nanotubes, structures and synthesis, growth mechanism and properties, devices applications, Nanowires: synthesis and characterization	12
3	NANO-FABRICATION High resolution nano lithography, E-beam and nano imprint lithography, Dip- Pen lithography, AFM Lithography. Nano characterization: High Resolution TEM, Scanning Probe Microscopes: Atomic Force Microscope and Scanning Tunneling Microscope, Nano manipulator, Lab on a Chip concept, Packing of Electronics devices (wire bonding, device encapsulation).	10
4	APPLICATIONS Introduction to novel smart materials, Photovoltaic technology and design, Flexible electronics, Emerging Memory technologies (Magnetic, Phase Change, Resistive) Molecular Switches and logic gates and Introduction to electronics and Bio sensors.	10

Course Outcomes:	
1	Outline the importance of nano dimensional materials and their applications.
2	Realize and explain the growth of nano-materials.
3	Characterize and study the properties of material
4 Understand the physical laws and effects that are active in the nano-world. The relationship between these laws and the extraordinary properties of nanodevices and demonstrate the applications of nano electronic devices

Suggested Books :				
Sr.N o.	Title of Book/Name of Author(s)/Publisher	Year of Publication/Reprint		
1	Introduction to Nanotechnology First Edition Risal Singh & shipra mital gupta Oxford India press	2016		
2	Fundamentals of Microfabrication and Nanotechnology (3rdEdition) by Marc Madou, CRC Press	2011		
3	Nano: The Essentials: Understanding Nanoscience and Nanotechnology by T. Pradeep,McGraw Hill Professional	2008		
4	Handbook of Nanotechnology (3rd Edition) by Bhushan, Springer	2007		

Course Name	:	MEMS AND MICROSYSTEMS
Course Code	:	EC2432
Credits	:	4
L T P	:	310

By the end of this course students should be able to explain the evolution, basics of MEMS and microsystems technology, summarize the basic concepts and design methodology of MEMS and Microsystems for various applications.

Lecture wise breakup		Number of
	-	Lectures
OVERVIEW OF MEMS AND MICROSYSTEMS		
1	Introduction Microsystem vs. MEMS. Microsystems and Microelectronics, the	
	Multidisciplinary Nature of Microsystem design and manufacture. Application of MEMS in	
	various industries MFMS and Miniaturization: Scaling laws in miniaturization: Introduction	
	to Scaling Scaling in Coomstry, Digid Body dynamics Electrostatic foreas Electromagnetic	
	foreas Electricity Eluid Meabaries Heat Transfer Metricle for MEMS and Microsystems	
	Ci as substante material machanical magnetics of Cilican Compounds (CiO2 Ci2N4	
	Si as substrate material, mechanical properties of Silicon, Silicon Compounds (SiO2, Si3N4,	
	SiC, polySi, Silicon), Plezoresistors, GaAs, Plezoelectric	
	crystals, Polymers, Packaging Materials, Surface Plasmon effects.	
	MICROMACHINING PROCESSES	10
	Overview of microelectronic fabrication processes used in MEMS, Bulk Micromachining -	
2	Isotropic & Anisotropic Etching, Comparison of Wet vs Dry etching, Surface Micromachining	
2	-General description, Processing in general, Mechanical Problems associated with Surface	
	Micromachining, Introduction to LIGA process, Introduction to	
	Bonding. Assembly of 3D MEMS - foundary process.	
	MICROSYSTEMS & MEMS DESIGN	10
	Design Considerations: Design constraints, Selection of Materials, Selection of Manufacturing	
_	processes. Selection of Signal Transduction. Electromechanical system, packaging, Process	
3	design, Mechanical Design – Thermo mechanical loading. Thermo	
	mechanical Stress Analysis Dynamic Analysis Interfacial fracture Analysis Mechanical	
	Design using Finite Flement Method Micromachining Technology – Surface and Bulk	
	Micromachining Micromachined Microsensors	
	DESIGN CASE USING CAD PRINCIPLES OF MEASURING MECHANICAL	10
	OUANTITIES	10
	Transduction from Deformation of Somiconductor Steelin courses Diago resistive offect in	
4	Transduction from Deformation of Semiconductor Strain gauges. Piezo resistive effect in	
	Single Crystal Silicon, Piezo resistive effect in Poly silicon 1 nin films, 1 ransduction from	
	deformation of Resistance. Capacitive Transduction: Electro mechanics, Diaphragm pressure	l
	sensors. Structure and Operation of Accelerometers, Resonant Sensors, Thermal Sensing and	
	actuation.	l

-			
Cours	Course Outcomes: By the end of the course, the student must be able to:		
1	Explain the operation principles of advanced micro- and nanosystems.		
2	Describe the technology to fabricate advanced micro- and nanosystems.		
3	Apply a concept of a micro- and nano-device into a real device considering the scaling laws and boundary conditions involved.		
4	Present the basics of implementation of MEMS into products.		

Suggested Books:				
Sr.	Name of Book/ Authors/ Publisher	Year of Publication/		
110.		Reprint		
1	Microsystem Design (5th Edition) by Stephen D. Senturia, Kluwer Academic Publishers	2003		
2	Micro Technology and MEMS by M. Elwenspoek and R. Wiegerink, Springer,	2000		
3	Fundamentals of Microfabrication and Nanotechnology (3rdEdition) by Marc Madou, CRC	2011		
	Press			

Total No. of Lectures – 42

4	MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering (2 nd Edition)by Tai-Ran H Su, Tata Mcgraw.	2008
5	Electromechanical Sensors and Actuators, Ilene J. Busch-Vishniac, Springer	2008

Course Name	:	LOW POWER VLSI DESIGN
Course Code	:	EC2433
Credits	:	4
L T P	:	310

The objective of this course is to familiarize the students with sources of power in an IC. Identify the power reduction techniques and to introduce with the Device & Technology Impact on Low Power.

	Total No. of Lectures – 42		
Lecture wise breakup		Number of	
		Lectures	
	LOW POWER BASICS:		
	Introduction: Need for Low Power Circuits, Low Power Techniques at different Hierarchical		
1	Levels, Parameters involved in power dissipation, Need for low power VLSI chips, Dynamic	8	
	Power Dissipation, Short Circuit Power, Switching Power, Gliching Power, Static Power		
	Dissipation. Emerging Low power approaches. Physics of power dissipation in CMOS		
	devices. Silicon- on-Insulator.		
	DEVICE & TECHNOLOGY IMPACT ON LOW POWER:	8	
2	Dynamic dissipation in CMOS, Transistor sizing & gate oxide thickness, Impact of technology		
	Scaling, Technology & Device innovation.		
	LOW-POWER DESIGN APPROACHES:		
	Low-power Design Methodologies: Supply voltage scaling approaches at different levels of		
-	hierarchy, Leakage Power minimization Approaches: Variable-threshold-voltage CMOS		
3	(VTCMOS) approach, Multi-threshold-voltage CMOS (MTCMOS) approach.	14	
	ARCHITECTURAL LEVEL APPROACH:		
	Pipelining and Parallel Processing Approaches.		
	SWITCHED CAPACITANCE MINIMIZATION APPROACHES:		
	System Level Measures, Circuit Level Measures.		
	ARITHMETIC COMPONENTS AND POWER ESTIMATION:		
4	Low power animmetic components: introduction, standard Adder Cells, CMOS Adder s		
4	Architectures – Ripple Carry Adders, Carry Look- Anead Adders.	10	
	rower estimation Simulation power analysis Probabilistic power analysis	12	
	Logic power estimation – simulation power analysis r tobabilistic power analysis.		

Course Outcomes: By the end of this course, the students will be able to:		
1	Demonstrate the sources of power dissipation in an IC in various applications.	
2	Summarize the power reduction techniques.	
3	Explain various power estimation techniques.	

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	Kaushik Roy, Sharat C. Prasad, "Low power CMOS VLSI circuit design", Wiley Inter science Publications"	1987	
2	Practical Low Power Digital VLSI Design – Gary K. Yeap, Kluwer Academic Press	2002	
3	Low Power CMOS VLSI Circuit Design – A. Bellamour, M. I. Elamasri, Kluwer Academic Press	1995	
4	Ajit Pal, —Low-Power VLSI Circuits and SystemsI, Springer	2015	
5	J. B. Kuo and J-H. Lou, -Low-Voltage CMOS VLSI Circuits, Wiley	1999	

Course Name	:	ADVANCE VLSI DEVICES
Course Code	:	EC2434
Credits	:	4
LTP	:	310

The objective of this course is to familiarize the students with the Physics, Analysis, and Design of Novel and Advanced VLSI Device (Mostly in Nano-scale dimensions) Structures. The main topics for this course center around Nano FETs (Field-Effect Devices) the most promising VLSI Device till date.

Total No. of Lectures		s – 42
Lectu	re wise breakup	Number of
		Lectures
	Nanoscale MOSFETs	0
	Challenges of Nanoscale MOSFETs. Limitations of Nanoscale MOSFETs: Subthreshold	8
1	Leakage, Threshold Voltage Variation, Mobility Degradation, Hot Carrier Effects,	
	Source Drain Tunneling Parasitic Resistance and Capacitance, Reverse Biased Junction	
	Leakage Current, Ballistic and Quasi-Ballistic MOSFETs.	
	Advanced MOSFETs	10
2	Silicon-on-Insulator (SOI) MOSFETs: Fully Depleted (FD) SOI, Partially Depleted (PD) SOI,	10
	Junction Less SOI. Other Multigate SOI-MOSFETs: Double Gate, FinFET, π Gate, Ω	
	Gate, Gate-All-Around (GAA) or surrounding gate, Silicon on Nothing (SON),	
	Nanowire FET, (i) Channel Engineering: Retrograde Substrate and Halo Doping profiles; (ii)	
	Gate Engineering: High-k gate dielectrics, Metal Gate-Stack; (iii) Source/Drain (S/D)	
	Engineering: S/D Engineering of nanoscale double gate SOI MOSFETs, Schottky-barrier	
	S/D Technology; (iv) Material Engineering: high mobility materials (e.g. Ge,	
	GaAs/InGaAs etc.) for channel of FET.	
	Advanced CMOS	
	New Materials and Device Structures (CMOS circuits, SOI MOSFETs, Heterostructure FETs,	
	Nanotube FETs, Nanowire FETs, Novel steep subthreshold slope devices, Alternative devices	
3	(Excitons, Spin, Phase Transitions).	8
	Promising Nanodevices Beyond CMOS	
	Thin Film Transistors (TFT): Hydrogenated amorphous silicon (a-Si:H) TFT, Impact-	
4	Ionization MOSFETs (IMOSFETs), Tunnel FETs (TFETs), Schottky-Barrier FETs	8
	(SBTFETs), Carbon Nanotube-FETs (CNTFETs), Organic FETs (OFETs)	
	Photonic devices	
	LED and Semiconductor Lasers: Introduction, Radiative Transitions, Semiconductor Laser	
5	Physics, Laser Operating Characteristics	
5	Photodetectors: Introduction, Photoconductor, Photodiode, Avalanche Photodiode	8
	Solar Cells: Introduction, Solar Radiation and Ideal Conversion Efficiency, p-n junction Solar	
1	Cells, Heterojunction, Interface and thin film solar cells	

Cours	Course Outcomes: By the end of this course, the students will be able to:		
1	Make projections about MOS device scaling and how it affects circuit/system performance.		
2	Recognize the relevant device physics that underlies CMOS device design.		
3	Go to a conference or read a journal article about CMOS devices and use the knowledge obtained in		
	this course to understand the material.		
4	Develop an intuitive feel in addition to solving equations.		
5	Obtain necessary skills to explore the research space of state-of-the-art VLSI technology.		

Sugg	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition, Wiley.	2006	
2	Jean-Pierre Colinge (Ed), FinFETs and Other Multi-Gate Transistors, Springer.	2008	

4 Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices, Cambridge university press. 2013 5 Weste, Neil HE and David Harris, CMOS VLSI design: a circuits and systems perspective, Pearson Education India. 2015 6 Recent Published research papers 2015	3	S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs,Springer.	2013
5Weste, Neil HE and David Harris, CMOS VLSI design: a circuits and systems perspective, Pearson Education India.20156Recent Published research papers2015	4	Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices, Cambridge university press.	2013
6 Recent Published research papers	5	Weste, Neil HE and David Harris, CMOS VLSI design: a circuits and systems perspective, Pearson Education India.	2015
	6	Recent Published research papers	

Embedded Systems Pool

Course Name	:	MICROPROCESSOR AND MICROCONTROLLER
Course Code	:	EC 2221
Credits	:	4
LTP	:	302

At the end of the course, the students should be able to explain the architecture and programming of 8086 microprocessor and 8051 microcontroller. The student should be able to demonstrate various interfacing techniques.

Total No. of Lectures – 4		s – 42
Lect	ure wise breakup	Number of
		Lectures
	8086 ARCHITECTURE:	6
1	Introduction of microprocessor, 8086 architecture- functional diagram, Register	
	organization, memory segmentation, programming model, Memory addresses,	
	physical memory organization, Signal descriptions of 8086-common function signals,	
	PROCE AMMINE AND INTERFACINE FOR \$086.	10
	Instruction formate. Addressing modes instruction set assembler directives. Macros	10
2	instruction formats. Addressing modes, instruction set, assembler directives. Macros,	
2	Simple programs involving logical, branch and call instructions. Sorting, evaluating	
	arithmetic expressions, string manipulations. Memory addressing, decoding and	
	Memory interfacing –	
	Interrupts and interrupts handling. Introduction to 8087 math coprocessor.	
3	I/O INTERFACE:	8
5	8255 PPL various modes of operation and interfacing to 8086, interfacing of key	
	board display Stepper motor interfacing D/A & A/D converter 8251 USART	
	architecture and Interfacing	
	8051 MICROCONTROLLERS:	
4	Architecture Pin configuration SER's Memory 8051 Addressing modes	4
-	Architecture, 1 in configuration, 51 K s, Wentory, 6651 Addressing modes	-
	8051 INSTRUCTIONS:	
	Introduction to 8051 assembly language programming: JUMP, LOOP and CALL	
6	instructions Arithmetic instructions: Unsigned addition and subtraction unsigned	_
	mistractions, Artainiete mistractions. Onsigned addition and subtraction, unsigned	5
	multiplications and Division, signed number concepts and arithmetic operations,	
	Logic and Compare instructions.	
_	I/O PORT PROGRAMMING:	_
7	Single bit instruction programming, Single bit operations with CY, Programming 8051	5
	timers, counter programming, generating pulse waveforms.	
8	8051 INTERRUPTS:	1
U	Programming Timer Interrupts, Programming External Hardware Interrupts.	-
Sr.		Number of
No.	List of experiments	Turns
		_
1	8086 based experiments for data transfer operations.	2

1	oboo bused experiments for dute transfer operations.	
2	8086 based experiments for arithmetic operations.	2
3	8086 based experiments for logical operations.	2
4	8086 based experiments for data conversions.	2
5	Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.	2
6	External ADC and Temperature control interface to 8051	2

\mathbf{r}
4

Cour	Course Outcomes: By the end of this course student will be able to:	
1	Explain the functioning of microprocessor and microcontrollers.	
2	Demonstrate microcontrollor based projects.	
3	Enhance the programming skills.	
4	Identify the importance of Assembler Directives and Operators.	

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Microprocessors and Microcontrollers Architecture, Programming and Interfacing Using 8085, 8086 and 8051 SoumitraMandal Tata McGraw-Hill	2017	
2	A.K Ray & K.M. Burchandi, Advanced Microprocessor and peripherals Architectures, Programming and interfacing ", second edition, Tata McGraw-Hill	2006	
3	Microprocessors and Peripherals by- B.Brey, CBS.	1989	
4	The 8051 Microcontrollers by- Ayala, Penram Publications.	2010	

Course Name	:	INDUSTRIAL AUTOMATION
Course Code	:	EC 2222
Credits	:	4
LTP	:	310

The main aim of this course is to make students will learn about the automation used in various industrial applications and the use of PLC, DCS and SCADA in different processes.

	Total No. of Lecture	s – 42
	Lecture wise breakup	Number of
	_	Lectures
1	Programmable Logic Controllers (PLC): Architecture of PLC- Different Modules, Power Supply Unit Etc, Need of PLC in Designing. Different Types Of Sensors- Sinking, Sourcing, NPN, PNP, Monitoring the Process through Sensors- Connection Details. Analogy Addressing, Continues Process Monitoring And Control.Different Types of Controllers- ON/OFF, Proportional, Derivative, Integral and PID Control.PLC Programming of Branded PLCs.NO/ NC Concept.Data File Handling- Forcing I/O.Wiring and Fault Correction.Programming Practices	12
2	Supervisory Control And Data Acquisition (SCADA): SCADA Packages, Role of SCADA in Industrial Automation, SCADA System Configuration, RTU, Communication Protocols.Script Programming.Real Time and Historical Trend.Configuring Alarms.Real Time Project Development with PLC Interfacing.Communication with Other Software.Recipe Management.Accessing Different Security Levels.Report Generation of Current Plant.	12
3	Distributed Control System (DCS) Architecture of DCS, Yokogawa Centum CS 3000, Comparison of PLC with DCS, Programming Languages for DCS, Different Types of Cards and Their Functions.	10
4	Human Machine Interface Different Types of Operator Interfaces, Textual, Graphical, Wiring Practice of HMI, Data Handling With HMI, Configuration and Interfacing to PLC and PC, Communication Standards- DF1, Ethernet, DH45, RS232, RS485, Profibus.	8

Cour	Course Outcomes: By the end of the course, the student must be able to:		
1	Compare conventional sequential control with programmable logic control system		
2	Develop programs using different PLC programming languages for sequential and continuous		
	process		
3	Interface analog and digital input/ output devices with PLC using different communication protocol		
4	Understand the basic types, levels, strategies of automation		

Suggested Books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint		
1	Programmable logic controller by Frank D. Petrusella, Tata McGraw-Hill	2005		
2	Introduction to programmable logic controller by Gary dunning, Thomson Asia Pte Ltd	2005		
3	PLCs & SCADA - Theory and Practice by Rajesh Mehra, Vikrant Vij	2012		
4	SCADA: Beginner's Guide by Francis G.L	2015		
5	SurekhaBhanot, Process Control: Principles and Applications, Oxford University Press	2008		
6	G. Dunning, Introduction to Programmable Logic Controllers, Cengage Learning	2005		
7	Recent Published research papers			

Course Name	:	EMBEDDED SYSTEM DESIGN
Course Code	:	EC 2223
Credits	:	4
LTP	:	302

At the end of this course, the student should be able to learn concepts of embedded systems, explain the architecture and Programming ARM - Cortex and PIC microcontrollers and its support devices .

Total No. of Lectures – 42 Number of Lecture wise breakup Lectures INTRODUCTION TO EMBEDDED SYSTEMS: 2 1 Fundamentals of Micro-controllers and Embedded Systems, Block Diagram, Micro-Controllers versus Microprocessors, Applications of Micro-Controllers and Embedded Systems, Development Systems for Micro-Controllers and Embedded Systems **ARM EMBEDDED SYSTEMS:** 8 2 CISC versus RISC Architectures, RISC Design Philosophy, ARM Design Philosophy, Embedded System Hardware: ARM Bus Technology, Memory, Peripherals. Embedded System Software: Initialization Boot Code, Operating System, Von-Neumann versusHarvard Architectures, Registers, Current Program Status Register (CPSR), Pipeline, Exceptions, Interrupts and the Vector Tables, Core Extensions: Cache, Memory Management, Coprocessors **ARM INSTRUCTION SET:** 3 Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software 14 Interrupt Instructions, Program Status Register Instructions, Loading Constraints, Conditional Execution, Thumb Register Usage, ARM-Thumb Interworking, Branch Instructions, Data Processing Instructions, Load-Store Instructions, Stack Instructions, Software Interrupt Instructions **PIC18FXXXX FAMILY:** 7 4 Introduction to PIC microcontrollers, Architecture of PIC18 family of devices, PIC18F programming model, instruction set, instruction format. Data copy, arithmetic, branch, logical, bit manipulation and multiply-divide operations. Stacks, subroutines and macros. 5 **INPUT/OUTPUT PORTS AND INTERFACING:** 5 Concepts of I/O interfacing, PIC18 I/O ports, Interfacing of output and input peripherals, Concept of serial I/O, PIC18 serial communication module **INTERRUPTS, TIMERS and DATA CONVERTERS:** 6 6 Concepts of Interrupts and Timers, Interrupts and their implementation in PIC18, timer operation, Use of Interrupts in applications, Basic concepts of Data Converters, PIC18F452 A/D and D/A converter modules and its Applications

List of Experiments:		Number of Turns
1	To get familiar with KEIL and develop at least 5 programs for using ARM processor	1
2	Interfacing ADC and DAC with ARM	2
3	Interrupt performance characteristics of ARM	3
4	Implementing zigbee protocol with ARM	4

5	To get familiar with MPLAB and FLOWCODE software and develop at least 8	5
	programs on each for PIC Microcontroller	
6	Using Flowcode, use ZIGBEE, Bluetooth module, GPS module along with PIC	6
	Controller	

Course Outcomes: By the end of this course, the students will be able to:		
1	Understand the Embedded Concepts and Architecture of Embedded Systems.	
2	Understand the architecture and programming of ARM Cortex Microcontroller.	
3	Design and develop systems based on PIC micro-controller and its interfaces.	

Sugg	Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint		
1	The Definitive Guide to the ARM Cortex-M3, Joseph Yiu, Second Edition, Elsevier Inc. 2010.	2010		
2	ARM System-On-Chip Architecture ^{II} , Steve Furber, - Second Edition, Pearson Publisher, 2015	2015		
3	ARM System Developer's Guide -Designing and Optimizing System Software by: Andrew N Sloss, Dominic Symes, Chris Wright; Elseiver	2004		
4	PIC Microcontroller and Embedded Systems using Assembly and C for PIC18 by M.A. Mazidi, R.D. McKinlay and D. Causey, Pearson	2007		
5	Cortex-M series-ARM Reference Manual	NA		
6	Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 Microcontroller Family), Ramesh GAONKAR, Penram International Publishing	2007		

Course Name	:	IoT with ARDUINO AND RASPBERRY PI
Course Code	:	EC2224
Credits	:	4
LTP	:	302

The objective of this course is to familiarize the students in IoT system design using Arduino and Raspberry pi.Students should (a) learn about the Arduino, Raspberry Pi, and all other associated platforms(b) learn about basic programming and structures required for basic operation of the platform, (c) understand how to recognize functions, operations and syntax of Python (d) understand various internet communication protocol and application of IoT in Industry and Home automation.

Total No. of Lectures – 42

Lecture wise breakup		Number of
	Embaddad System design.	Lectures
1	Introduction to embedded systems, Components of embedded system. Advantages and applications of embedded systems, Examples of real time embedded systems and how they are manufactured industry ready.	2
	Learning Arduino Platform:	14
2	Arduino platform, Prototyping environment, Electronic component overview, Arduino	
	Development, Environment, setting up the Arduino board, creating sketches, using	
	Libraries, using example codes, Debugging Using the Serial MonitorArduino C, Data	
	types, Decision making, Loops, Functions, Pointers, Structures. and Hardware	
	Interfacings with Arduino, Interfacing sensors and actuators using Arduino.Wired and	
	Wireless Communication, Communication Protocols, Interfacing Communication	
	Modules with Arduino.Interfacing, Types of motors - DC, Servo, Stepper, Motor	
	Drivers, Speed and direction control.	
	Getting Started with Raspberry Pi: Pagia functionality of the Deepherry Di board and its Drocessor, setting and configuring	
	the board, differentiating Raspberry Pi from other platform like arduino, begal, asus	
3	thinker etc., Overclocking, Component overview. Introducing to Python programming	14
	language: Python Programming Environment, Python Expressions, Strings, Functions,	
	Function Arguments, Lists, List Methods, Control Flow, Numpy, PIP (Python Installation Declarge) and sustaining difference Communication facilities on reachange	
	Pi (I2C SPI LIART) working with RPil GPI library Interfacing of Sensors and	
	Actuators, Internet of Things on Raspberry Pi.	
	Exploring IoT	
4	- A Basic Perspective- Introduction, Some Definitions, M2M Value Chains, IoT Value	
4	chains, An emerging industrial structure for 101, The international driven global value chain and global information monopolies. M2M to IoT An Architectural Overview	12
	Building an architecture Main design principles and needed capabilities. An IoT	
	architecture outline, standards considerations. An IoT architecture outline, standards	
	considerations. Review of internet protocols -Processing platforms for IoT-sensors -	
	actuators-Cloud computing models -low power, low range protocols -Zigbee -BLE -	
	6LowPAN. Applications for Io1-Smart home, city, agricultureetc,.	

Sr. No.	List of experiments	Number of Turns
1	Introduction to Arduino Uno (or ARM Processor like Raspberry pi)	1
2	LCD interfacing with Arduino Uno. 16x2 RGB backlight LCD interfacing.	1

3	Relay control by a button.: When the button gets pressed, the relay will close, allowing current to flow through the connected appliance.	1
4	Controlling LED with Sound sensor	1
5	Using Light Sensor Turn ON an LED when the light intensity falls below the preset threshold.	1
6	Controlling LED brightness using Rotary angle sensor.	1
7	Servo Control Use a potentiometer to control the position of the servo.	1
8	RFID Automatic Identification and Data Capture	1
9	Working with GSM/GPRS based control using SIM900 module	1
10	Project: RFID based Assets and Vehicle Tracking	1
11	Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.	1
12	Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor	1
13	OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and actuators. The data for the same should be displayed via a webpage or a web app.	2

Cours	se Outcomes: By the end of this course, the students will be able to:
1	Understand how the Arduino platform works in terms of the physical board and libraries and theIDE
	(Integrated Development Environment).
2	Develop an understanding of implementation methodology of Arduino.
3	Understand the working of Raspberry Pi, its features and how various components can be used with
	Pi.
4	Create IoT solutions for Industrial and Commercial Building Automation and Real World Design
	Constraints.

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Margolis, M. Arduino cookbook: Recipes to begin, expand, and enhance your projects. O'Reilly Media, Inc.	2011	
2	Mark Lutz, "Learning Python", O'Reilly Media, 5th Edition.	2016	
3	From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, DavidBoyle, 1st Edition, Academic Press,	2014	
4	The official raspberry Pi Projects Book: https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf	NA	
5	Raspberry Pi Assembly Language RASPBIAN Beginners THIRD EDITION, CreateSpace Independent Publishing Platform.	2013	

Course Name	:	NEURAL NETWORKS AND FUZZY SYSTEMS
Course Code	:	EC 2321
Credits	:	4
LTP	:	310

At the end of the course, the students should have knowledge of different Neural Networks and problems based onpattern classification and recognition. Students should also be able to design various real time applications using the concepts of Fuzzy Logic systems.

Total No. of Lectures – 42

Lecture wise breakup		Number of
		Lectures
	FUZZY LOGIC AND SETS:	6
1	Concepts of fuzzy logic, Crisp and fuzzy sets, properties of fuzzy sets, operations on	
	fuzzy sets, fuzzy relations, operations on fuzzy relations.	
2	FUZZY LOGIC SYSTEM COMPONENTS:	4
-	Membership function, features of membership function, fuzzification, membership	
	value assignment, fuzzy decision making, fuzzy system,	
	FUZZY RULE BASED SYSTEM:	4
3	Formation of rules, decomposition of rules, aggregation and properties of fuzzy rules,	
	fuzzy interference systems.	
	INTRODUCTION TO NEURAL NET:	4
4	Artificial Neural Networks, Biological Neural Networks, Applications of Neural	
	Nets, Architecture of Neural Networks, History of Neural Networks, MC Culloch-	
	Pitt Neuron.	
5	PATTERN CLASSIFICATION:	4
-	Biases and threshold, Linear separability, Hebbnet, Perceptron, Adaline, Madaline.	
	PATTERN ASSOCIATION:	6
6	Training Algorithms for Pattern Association, Heteroassociative Memory Neural	
	Network, Auto associative Net, Iterative Auto associative Net, Bidirectional	
	Associative Memory (BAM).	
_	NEURAL NETWORKS BASED ON COMPETITION:	6
7	Maxnet, Mexican Hat, Hamming Net, Kohonen Self Organizing Maps, Learning	
	Vector Quantization, Full and Forward Counterpropagation.	
_	ADAPTIVE RESONANCE THEORY:	4
8	Introduction, Architecture and algorithm of ARTI and ART2.	
9	BACKPROPAGATION NEURAL NET:	4
	Standard Back propagation, Architecture, Algorithm, Variations, Derivation of	
	learning	
	rules.	

Course Outcomes: By the end of this course student will be able to:	
1	Describe the concepts of feed forward neural networks.
2	Explain Adaptive neural networks.
3	Design various networks for real time applications.
4	Summarize the concept of fuzziness involved in various systems.

Sug	Suggested Books:	
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint
1	Fundamentals of Neural Networks, Laurence Fausett, Pearson Education	2006

2	Neural networks and Fuzzy Logic, K VinothKumar, R. Saravana Kumar, Katson	2012
	Books	
3	Neural Netorks and machine learning, Haykin, Pearson Education	2008
4	Neural Networks, Satish Kumar, TMH	2012

Course Name	:	COMPUTER ARCHITECTURE
Course Code	:	EC 2322
Credits	:	4
LTP	:	3-1-0

By the end of this course, the students should be able to identify and define the architecture and organization of thebasic computer. The students should also be able to explain the role of different modules like control unit, central processing unit, input-output organization, memory unit in the organization of basic computer, solve computer arithmetic and define the concept of parallel processing.

Total No. of Lectures -

42

Lecture wise breakup		Number of
		Lectures
1	REGISTER TRANSFER AND MICRO OPERATIONS: Register transfer Language, Register transfer, Bus & memory transfer, micro operations, Instruction codes, Computer instructions, Timing & control, Instruction Cycles, Memory reference instruction, Input /Output & Interrupts, Complete computer description & design of basic computer.	8
2	CONTROL UNIT: Hardwired vs. Micro programmed control unit. Introduction of GPU.	4
3	CENTRAL PROCESSING UNIT: General register organization, Stack organization, Instruction format, Data transfer & manipulation, Program control, RISC, CISC.	7
4	COMPUTER ARITHMETIC: Addition & subtraction, Multiplication Algorithms, Division algorithms.	5
5	INPUT-OUTPUT ORGANIZATION: Peripheral devices, I/O interface, Data transfer schemes, Program control, Interrupt, DMA transfer, I/O processor.	7
6	MEMORY UNIT: Memory hierarchy, Processor vs. memory speed, Hard disk drive, High-speed memories, Cache memory, Associative memory, Interleave, Virtual memory, Memory management	8
7	PARALLEL PROCESSING: Types of parallel processors, performance considerations, pipeline processors, array processors, multicore systems	3

Cours	se Outcomes: By the end of this course, the students will be able to
1	Define the syntax of Register transfer Language and different micro operations.
2	Design and construct the instruction format & addressing modes for a given operation and
	algorithms for
	addition, subtraction, multiplication & division.
3	Explain the interdependence of different modules like control unit, CPU and I/O interface and their
5	design
	aspects.
4	Summarize the working of different types of memories like associate memory, cache memory,
-	virtual
	memory etc. and their mapping techniques.
5	Outline the concept of pipelining and multiprocessors.

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	Computer System Architecture, Morris M. Mano, Prentice Hall, 3rded.	1992	
2	Computer Architecture and Organization, J.P. Hayes, McGraw Hill, 3 rd ed.	1998	
3	Computer Architecture A Quantitative Approach, J.L. Hennessy, D.A. Patterson and D. Goldberg, Pearson Education Asia, 5 th ed.	2006	
4	System Architecture: software and hardware concepts, W.E. Leigh, and D.L. Ali, South Wester Publishing Co.	2000	

Course Name	:	MULTIMEDIA TECHNOLOGY
Course Code	:	EC2323
Credits	:	
LTP	:	310

The objective of the course is to learn the technical details of common multimedia data formats, protocols, and compression techniques of digital images, video and audio content. It enables to learn about the significance of quality of service in multimedia networking

Total No. of Lectures-42

Lecture wise breakup		No of
		lectures
1.	INTRODUCTION:	4
	Media types (text, graphics, images, audio, speech, video, animation), Components	
	of the multimedia system, Hypermedia and the Web, Hypertext, Multimedia	
	Systems: Characteristics, Challenges, Desirable Features, Components and	
	Applications, Trends in Multimedia.	
2.	MEDIA AND DATA STREAMS:	8
	Discrete and Continuous Media, Analog and Digital Signals, Text and Static Data,	
	Audio: digitizingsound, Graphics, Images and Video, Multimedia Authoring	
	Paradigms, Design Issues in Multimedia Applications, Standardsfor Document	
	Architecture: SGML (Standard Generalized Markup Language), ODA (Open	
	Document Architecture); Multimedia Standards for Document Interchange: MHEG	
	(Multimedia Hypermedia Expert Group).	
3.	STORAGE MEDIA:	4
	Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards,	
	DVD and its standards, Multimedia Servers.	
4.	GRAPHICS , IMAGES AND VIDEOS:	6
	Display types and file formats, Review of color images and video clips: basic	
	models of color, Video: Component and composite video, S-video, analog and	
	digital video, Digital Audio: Sampling, quantization, coding and transmission of	
	sound.	
5.	IMAGE COMPRESSION:	8
	Types of Redundancies, Classifying Compression Algorithms, Basics of	
	Information Theory, Entropy Encoding: Run-length Encoding, Pattern Substitution,	
	Huffman Coding, Huffman Coding of Images, Adaptive Huffman Coding,	
	Arithmetic Coding, Lempel-Ziv-Welch (LZW) Algorithm, Source Coding	
	Techniques: Transform Coding, Frequency Domain Methods, Differential	
	Encoding, Hybrid Coding: Vector Quantization, JPEG Compression.	
6.	AUDIO COMPRESSION:	4
	Simple Audio Compression Methods, Psychoacoustics Model, MPEG Audio	
	Compression.	
7.	VIDEO COMPRESSION:	4
	Intra Frame Coding (I-frame), Inter-frame (P-frame) Coding, H.261 Compression,	
	MPEG Compression, MPEG Video, MPEG Video Bit stream, Decoding MPEG	
-	Video in Software.	
8.	MULTIMEDIA COMMUNICATION:	4
	Building Communication Network, Application Subsystem, Transport Subsystem,	
	QOS, Resource Management, Distributed Multimedia Systems, Elements of	
	(immersive/non-immersive) Virtual Reality, Augmented Reality and Telepresence	
	Applications, Mobile technologies	

CO	URSE OUTCOME: At the end of the course, students will be able to
1.	Describe the types of media and define multimedia system.
2.	Describe the process of digitizing (quantization) of different analog signals (text, graphics,
	sound and video).
3.	Use and apply tools for image processing, video, sound and animation.
4.	Apply methodology to develop a multimedia system.
5.	Apply acquired knowledge in the field of multimedia in practice and independently continue to
	expand knowledge in this field.

Sugg	ested Books:	
Sr. No	Name of Book/Authors/ Publisher	Year of Publication/R
110.		eprint
1.	Multimedia Computing, Communications and Applications, Ralf Steinmetz and	2012
	KlaraNahrstedt, Pearson Education	
2.	Multimedia System Design, Prabhat K. Andleigh, KiranThakkar, PHI	1996
3.	Introduction to Information Theory and Data Compression" Second Edition, Darrel	2003
	Hankerson, Greg A Harris, Peter D Johnson, Chapman and Hall ,CRC press	
4.	Multimedia Communications, Fred Halsall, Pearson Education	2006

Course Name	:	DIGITAL IMAGE PROCESSING
Course Code	:	EC2324
Credits	:	4
LTP	:	3-1-0

At the end of this course, the students should be able to learn and understand the fundamentals of image processing, transformation techniques, design & applications of image processing. The students should also be able to provide a useful skill base that would allow them to carry out further study should they be interested and to work in the field.

Total No. of Lectures-42

Lee	cture wise breakup	No. of
1	FUNDAMENTALS OF IMAGE PROCESSING: Introduction,Human visual system,Steps in image processing systems, Image acquisition, Sampling and Quantization, Pixel relationships,Light, brightness adaption and discrimination, Color fundamentals and models, File formats, Image operations, Arithmetic, Geometric and Morphological.	9
2	IMAGE ENHANCEMENT: Basic of intensity transform and spatial domain, Gray level Transformations, Contrast stretching, Thresholding, Image negative, Log transformation, Power-low transformation, Intensity level slicing and Bit-plane slicing, Histogram processing, Histogram equalisation process, Spatial filtering smoothing and sharpening, Filtering in frequency domain, Fourier transform of sampled function, DFT, FFT, DCT, Image smoothing and sharpening filters – Homomorphic Filtering.	9
3	IMAGE SEGMENTATION AND FEATURE ANALYSIS: Fundamentals,Detection of Discontinuities, Edge operators, Edge linking and Boundary Detection, Thresholding, Edge based segmentation, Region based segmentation,Region split and merge techniques, Morphological Watersheds,Motion Segmentation, spatial techniques and frequency domain techniques, feature analysis and extraction.	8
4	MULTI RESOLUTION ANALYSIS AND COMPRESSIONS: Multi Resolution Analysis: Image Pyramids, Multi resolution expansion, Wavelet Transforms, Image compression:Fundamentals, Image compression models, Elements of Information Theory, Error free compression, Lossy Compression, Image formats, and Compression Standards, Basic compression methods: Huffman coding, Arithmetic coding, LZW coding, JPEG compression standard.	8
5	APPLICATION OF IMAGE PROCESSING: Image classification, Image recognition, Image fusion, Steganography, Colour Image Processing, Color models, Pseudo-colour image processing, Pattern recognition.	8

Cour	Course Outcomes: By the end of this course, the students will be able to:	
1	Acquire the fundamental concepts of a digital image processing system.	
2	Design and implement with Matlab algorithms for digital image processing.	
3	Utilize the skill base necessary to further explore advanced topics of Digital Image Processing.	

S.No.	Name of Book/Authors/Publisher	Year of Publication/ Reprint
1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing",	2001
	Pearson Education	
2	Milan Sonka, ValclavHalavac and Roger Boyle, "Image Processing,	1998
	Analysis and Machine Vision", 2nd Edition, Thomson Learning	
3	Anil K. Jain, "Fundamentals of Digital Image Processing". Pearson	1989
	Education,	
4	S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing",	2009
	Tata McGraw Hill Publication	
5	Rafael C. Gonzalez, Richard E. Woods & S L Eddins, "Digital Image	2003
	Processing using MATLAB", Prentice hall.	

Course Name	:	Advanced Sensing Technology
Course Code	:	EC2421
Credits	:	4
LTP	:	310

Course Objectives: The main aim of this course is to make students learn different sensing technology and methods for everyday useand it also highlights the future trend of sensors to mankind.

	Total No. of Lectures -	- 42
	Lecture wise breakup	Number of Lectures
1	ELECTROCHEMICAL SENSORS: Galvanic Cells, Electrode – ElectrolyteInterface, Fluid Electrolytes, Transduction Elements- Ion-Selective Electrodes, Nernst Equation, voltammetry, amperometry, conductivity, FET, Modified electrodes, Thin-Film Electrodes andScreen-Printed electrodes. Amperometric-bio sensors (Glucosesensor) and gas sensors.	10
2	CONDUCTOMETRIC-CHEMIRSISTOR Biosensor based chemiresistors, Semiconducting oxide sensor, CHEMFETs, ISFETs, FET basedBiosensors. Piezoelectric effect- Gas sensor applications, Biosensorapplications- Quartz crystal microbalance, surface acoustic waves,enzymatic mass sensor, Glucose thermistor, catalytic gas sensor.	10
3	INTRODUCTION FIBER OPTIC SENSOR Industrial Applications of Fiber Optic Sensors: Temperature, Pressure, fluid level, flow, position, vibration, rotation measurements, Current, voltage measurement, Chemical analysis. Introduction to smart structures Applications.	8
5	FLEXIBLE AND WEARABLE SENSORS Materials for flexible electronics, degrees of flexibility, substrates,Fabrication technology for flexible electronics - Fabrication on sheets by batch processing, fabrication on web by Roll-to Roll processing - Additive printing, Materials considerations for flexible electronics: Inorganics semiconductors and dielectrics, organic semiconductors and dielectrics, conductors - Print processing options for device fabrication: Overview, control of feature sizes of jet printed liquids, jet printing for etch mask patterning, methods for minimizing feature size, printing active materials	8
5	MEMS (MICROSENSORS) Pressure sensor- accelerometers- gyroscope, Introduction to nanotechnology, Future requirements andopportunities of nanotechnology in sensing, CNT 2D material and nanostructure based sensors, Nano electronics and nano photonics.Recent trends in Smart sensor, Agriculture sensor	6

Cour	Course Outcomes: By the end of the course, the student must be able to:		
1	Due to and of this course of the course, the stime the testime to any device of the course ductor		
1	By the end of this course students can realize the technology developments in the semiconductor		
	technology.		
2	To develop wearable sensors for Healthcare, Wellness and Environmental Applications.		
3	To understand the materials requirement and different fabrication process of MEMS devices.		
4	Present the basics of implementation of sensors into products.		

Sugg	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Loic J Blum and Coulet, "Biosensor: Principle and applications", CRC Press, 2 nd edition	2010	
2	Brian R Eggins, "Chemical sensors and Biosensors", John Wileysons Ltd,	2004	
3	K. T. V. Grattan, T. Sun (auth.), K. T. V. Grattan, B. T. Meggitt(eds.) Optical Fiber Sensor Technology: Fundamentals, SpringerUS,	2000	
4	Peter Grundler, "Chemical Sensors: Introduction for Scientistsand Engineers", Springer,	2007	
5	GuozhenShen, Zhiyong Fan, "Flexible Electronics: FromMaterials to Devices", 1st Edition, World Scientific Publishing Co,	2015	
6	Microsystem Design (5 th Edition) by Stephen D. Senturia, Kluwer Academic Publishers	2003	
7	Micro Technology and MEMS by M. Elwenspoek and R. Wiegerink, Springer,	2000	
8	Fundamentals of Microfabrication and Nanotechnology (3 rd Edition) by Marc Madou, CRC Press	2011	
9	MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering (2 nd Edition)by Tai-Ran H Su, Tata Mcgraw.	2008	
10	William S. Wong, Alberto Salleo, Flexible Electronics: Materials and Applications, 1st Edition, Springer,	2011	
11	Recent Published research papers		

Course Name	:	ROBOTICS
Course Code	:	EC2422
Credits	:	4
L T P	:	310

The main aim of this course is to introduce the modelling, simulation, and control of spatial multi-degree-offreedom robotic manipulators. In particular, the student will study the kinematics and dynamics of robotic manipulators. Additionally, student will get awareness about the trajectory planning and control of robotic arm.

	Total No. of Lectures	s – 42
Lectu	re wise breakup	Number of
		Lectures
1	INTRODUCTION:	2
1	History of the development of robots, basic components of robotic systems, Anatomy and	
	structural design of robot, manipulation, arm geometry, Drives and control (hardware) for	
	motions, End effectors and grippers	
	KINEMATICS:	10
	Translation, orientation of rigid bodies, Representation of links and joints, workspace,	
2	velocities, manipulator jacobian, singularities of robots and mechanisms, Kinematics for serial	
	and parallel manipulators, election of coordinate frames, Homogeneous transformation, DH	
	parameters, Direct and Inverse kinematics: Two link planner, PUMA 560, Stanford arm,	
	SCARA and Stewart Platform.	
	DYNAMICs of ROBOTS:	8
3	Introduction to robot dynamics, Forward and inverse dynamics of robot manipulators, Rigid	
	link Recursive Acceleration, Lagrange-Euler Dynamic formulation.	
	TRAJECTORY PLANNING and CONTROL:	6
4	Path planning, trajectory planning, Joint space trajectory planning, Cartesian space trajectory,	
	planning, Continuous trajectory recording (Trajectory following), position, velocity and force	
	control.	
5	MOBILE ROBOTICS:	4
	Wheeled mobile robots, bipeds, swarm robotics, Military mobile robots, Underwater robots,	
	Surveillance robots, Nano robots.	
6	SLAM (Simultaneous Localization and Mapping):	7
	Localization, Planning, Segmented Ste, Fun with Parameters, SLAM, Graph SLAM,	
	Implementing Constraints, Adding Landmarks, Matrix Modification, Untouched Fields,	
-	Landmark Position, Confident Measurements, Implementing SLAM.	_
7	VIRTUAL REALITY and HAPTICS:	5
	Virtual reality concepts, virtual world and real world, Interface to virtual world (inputs and	
	outputs), Types of interaction, Applications, Definition of Haptics, Importance of Touch,	
	Tactile Proprioception, Tactual Stereo genesis, Kinesthetic Interfaces, Tactile Interfaces,	
	Human Haptics, Overview of existing applications. Case studies.	

Cours	Course Outcomes: By the end of the course, the student must be able to:		
1	Design and simulate the forward and inverse kinematic model.		
2	Develop and analyze the trajectory planning.		
3	Model robot dynamics for a given serial robotic manipulator		
4	Apply the joint- and Cartesian-based schemes to control the manipulators in different applications.		
5	Analyze mobile robot in virtual and real environment		

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Spong, Mark W., and Mathukumalli Vidyasagar. Robot dynamics and control. John Wiley and Sons.	2008
2	Craig, John J. Introduction to robotics: mechanics and control, 3/E. Pearson Education India.	2009
3	Lewis, Frank L., D. M. Dawson, and Chaouki T. Abdallah. Control of robot manipulators. Prentice Hall PTR.	1993
4	Crane III, Carl D., and Joseph Duffy. Kinematic analysis of robot manipulators. Cambridge University Press.	2008
5	Koren, Yoram. Robotics for engineers. McGraw-Hill.	1985
6	Sensors And Transducers, D. Patranabis, Prentice-Hall India, 2nd Ed.	2004
7	Ranky, Paul G., Chung You Ho, and Paul G. Ranky. Robot modelling: control and applications with software. IFS (Publications).	1985
8	Fu, King Sun, Ralph Gonzalez, and CS George Lee. Robotics: Control Sensing. Vis. Tata McGraw-Hill Education.	1987
9	Recent Published research papers	

Course Name	:	PLC DESIGNING
Course Code	:	EC 2423
Credits	:	4
LTP	:	310

The main aim of this course is to make students learn programmable logic controllers (PLCs), process control algorithms, interfacing of sensors and other I/O devices, simulation and networking.

Lectures – 42

Total No. of

	Lecture wise breakup	Number of
		Lectures
1	PLC INTRODUCTION: Programmable Logic Controllers (PLCs): Introduction; definition & history of the PLC; Principles of Operation; Various Parts of a PLC: CPU & programmer/monitors; PLC input & output modules; Solid state memory; the processor; I/O modules; power supplies. PLC advantage & disadvantage; PLC versus Computers, PLC Application. Programming equipment; proper construction of PLC ladder diagrams; process scanning consideration; PLC operational faults.	8
2	PLC HARDWARE COMPONENTS The I/O section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O specifications, The CPU, Memory design, Memory Types, Programming Devices, Selection of wire types and size. Various INPUT /OUTPUT Devices and its interfacing with PLC.	8
3	PLC PROGRAMMING Processor Memory Organization, Program Scan, PLC Programming languages, Relay type instructions, Instruction addressing, Branch Instructions, Internal Relay Instructions, Programming Examine if Closed and examine If Open instructions, Entering the ladder diagram, Modes of operation.Creating Ladder Diagrams from Process Control Descriptions.Ladder diagram & sequence listing; large process ladder diagram construction, flowcharting as programming method, Industrial Examples, Programming Timers and Programming Counters.	10
4	PLC INSTRUCTIONS Bit Logic Instructions, Clock, Different Logical operation Instructions, Different Integer Math Instructions, Different Conversion Instructions, Different Comparison Instructions, Program Control Instructions, Sequencer and shift register instructions, Different Interrupt Instructions, Data Handling Functions,	8
5	PLC NETWORKING Introduction, Levels of Industrial Control, Types of Networking, Network communications.PLC Installation practices, Editing and Troubleshooting, PLC Enclosures, Electrical Noise, Leaky Inputs and Outputs, Grounding, Voltage variations and Surges, Program Editing, Programming and Monitoring, Preventive Maintenance, Troubleshooting, Connecting PC with PLC, Alternative Programming Languages, Various Brands of PLCs and their revolution.	8

Cours	Course Outcomes: By the end of the course, the student must be able to:				
1	Compare conventional sequential control with programmable logic control system				
2	Develop programs using different PLC programming languages for sequential and continuous				
	process				
3	Interface analog and digital input/ output devices with PLC using different communication protocol				
4	Test the PLC based system and troubleshoot the errors associated with it.				

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Programmable logic controller by Frank D. Petrusella, Tata McGraw-Hill	2005	
2	Introduction to programmable logic controller by Gary dunning, Thomson Asia Pte Ltd	2005	
3	Programmable Logic Controllers: Principles and Applications by John W. Webb and Ronald A. Reis, Prentice –Hall India	1994	
4	Programmable Logic Controllers by W. Bolton, Elsevier	2015	
5	Programmable Controllers An engineer's guide by E.A.Parr, Elsevier	2003	
6	S7-200, S7-300, PLC Manual of Siemens for Instructions	2008	
7	Recent Published research papers		

OPEN ELECTIVE

1	Communication Systems [*] (3-1-0) (EC6011/EC5001)
2	Digital Image Processing ^{* \$} (3-1-0) (EC6012/EC5003)
3	Computer Networks (3-1-0) (EC6013)
4	Advanced Communication Systems (3-1-0) (EC6014)
5	Mobile and Cellular Communication (3-0-2) (EC6015)
6	Digital Signal Processing ^{*\$} (3-1-0) (EC6016/EC5004)
7	Analog and Digital Electronics [*] (3-1-0)
	(EC6021/EC5002)
8	Introduction to Printed Circuit Board (3-0-2) (EC61022)
9	Electronic Measurements and Instrumentation (3-1-0)
	(EC6023)
10	MEMS and Microsystems (3-1-0) (EC6024)
11	Electronics Device Fabrication (3-0-2) (EC6025)
12	Nano Electronics Devices (3-0-2) (EC6026)
13	PLC designing (3-1-0) (EC6031)
14	ARDUINO Programming and Raspberry Pi (3-1-0)
	(EC6032)
15	Sensing Technology (3-1-0) (EC6033)
16	Multimedia Technology (3-1-0) (EC6034)
17	Microcontrollers and their Applications ^{*#} (3-1-0)
	(EC6035/EC5005)
18	Microprocessor and Microcontroller [*] [#] (3-1-0)
	(EC6036/EC5006)

* Fixed for Minor Specialisation; \$/# : any one subject

Course Name	COMMUNICATION SYSTEMS
Course Code	EC6011/EC5001
Credits	4
LTP	3-1-0
Course Objectives	

Course Objectives: By the end of this course, the students should be able to describe the concepts used in communication technology. The students should also be able to explain the modulation techniques used in Analog and digital communication and their applications.

Total No. of Lectu		
Leo	cture wise breakup	No. of Lectures
1.	ANALOG COMMUNICATION Introduction to Communication Systems: Block diagram, Need for Modulation, Theory of different types of modulation: Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM); Noise; Source of Noise: Externa & Internal Noise, Noise Calculation, Comparison of Various Analog Communication System(AM,FM,PM)	10
2.	DIGITAL COMMUNICATION Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK): BPSK, QPSK, 8PSK, Quadrature Amplitude Modulation (QAM), Bandwidth Efficiency, Comparison of Various Digital Communication System (ASK,FSK, PSK, QAM).	8
3.	DATA AND PULSE COMMUNICATION Data Communication: History of Data Communication, Sampling theorem, Pulse Communication: Pulse Amplitude Modulation (PAM), Pulse Width Modulation (PTM), Pulse Position Modulation (PPM), Pulse Code Modulation (PCM), Comparison of Various Pulse Communication Systems (PAM, PWM, PPM, PCM).	8
4.	SOURCE AND ERROR CONTROL CODING Entropy, Mutual Information, Source Encoding Theorem, Shannon Fanon Coding, Huffman Coding, Channel Capacity, Channel Coding Theorem, Error Control Coding, Linear Block Codes, Cyclic Codes, Error Detection and Correction Techniques	8
5.	APPLICATIONS OF RADIO COMMUNICATION Mobile communication, Internet, HDTV, FM Radio, Compression Techniques (JPEG, MPEG), AMPS, GSM, CDMA, 4G, 5G	8

Course Outcomes: By the end of this course, the students will be able to			
1.	Describe Block Diagram of communication systems.		
2.	Explain the modulation Techniques used in Analog and Digital Communication System		
3.	Describe the concept of Information and coding in data communication		
4.	Aware of Applications of Communication technology		

Sugg	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year o f Publicatio n/ Reprint	
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons	2004	
2.	H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education	2007	
3.	B. P.Lathi, "Modern Analog and Digital Communication Systems", 3rd Edition, Oxford University Press	2007	
4.	Blake, "Electronic Communication Systems", Thomson Delmar Publications	2002	
5.	Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education	2007	

Course Name	:	DIGITAL IMAGE PROCESSING
Course Code	:	EC6012/EC5003
Credits	:	4
LTP	:	3-1-0
Course Objectiv		

At the end of this course, the students should be able to familiarize with the fundamentals of image processing, transformation techniques, and design & applications of image processing. The students should also be able to provide a useful skill base that would allow them to carry out further study should they be interested and to work in the field.

	Total No. of L	ectures - 42
Lectu	ıre Wise Breakup	No. of
		Lectures
1	FUNDAMENTALS OF IMAGE PROCESSING: Introduction ,Steps in image processing systems, Image acquisition, Sampling and Quantization, Pixel relationships, Color fundamentals and models, File formats, Image operations, Arithmetic, Geometric and Morphological.	9
2	IMAGE ENHANCEMENT: Spatial Domain: Gray level Transformations ,Histogram processing, Spatial filtering smoothing and sharpening. Frequency Domain: Filtering in frequency domain , DFT, FFT, DCT , Smoothing and sharpening filters – Homomorphic Filtering.	9
3	IMAGE SEGMENTATION AND FEATURE ANALYSIS: Detection of Discontinuities, Edge operators, Edge linking and Boundary Detection, Thresholding, Region based segmentation, Morphological Watersheds, Motion Segmentation, Feature Analysis and Extraction.	8
4	MULTI RESOLUTION ANALYSIS AND COMPRESSIONS: Multi Resolution Analysis: Image Pyramids, Multi resolution expansion, Wavelet Transforms, Image compression: Fundamentals, Models, Elements of Information Theory, Error free compression, Lossy Compression, Compression Standards.	8
5	APPLICATION OF IMAGE PROCESSING: Image classification, Image recognition , Image fusion, Stegenography, Colour Image Processing.pattern recognition.	8

Course Outcomes: By the end of this course, the students will be able to:			
1.	Acquire the fundamental concepts of a digital image processing system.		
2.	Design and implement with Mat lab algorithms for digital image processing.		
3.	Utilize the skill base necessary to further explore advanced topics of Digital Image Processing.		

Suggested Books:				
Sr.no	Name of Book / Author / Publisher	Year of Publish / Reprint		
1.	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson Education	2001		
2.	Milan Sonka, ValclavHalavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", 2 nd Edition, Thomson Learning	1998		
3.	Anil K. Jain, "Fundamentals of Digital Image Processing". Pearson Education,	1989		

Course Name	:	COMPUTER NETWORKS
Course Code	:	EC6013
Credits	:	4
LTP	:	3-1-0

By the end of this course, the students should be able to define the basic concepts of Data communication with different models, classify and compare the physical layer, Data Link Layer, Network Layer and Transport Layer and their functions. The students should also be able to summarize the switching concept, its different types and explain the working of various types of wireless networks and their protocol.

Tota	al No. of Lectures: 42	
Lec	ture wise breakup	No. of Lectures
1.	OVERVIEW OF DATA COMMUNICATION AND NETWORKING: Data communications, Networks, The Internet, Protocols and standards, Layered tasks, OSI model, TCP /IP protocol Architecture, History of the computer network	(3)
2.	PHYSICAL LAYER: Data rate limit, Transmission impairments, Line coding, Block coding, Sampling, Transmission mode, Modulation of digital data, Telephone modems, Modulation of analog signal, FDM, WDM, TDM, Guided media, Unguided media	(5)
3.	DATA LINK LAYER: Types of errors, Detection, Error correction, Flow and error control, Stop and wait ARQ, go back n ARQ, Selective repeat ARQ, HDLC, Point to point protocol, PPP stack, Random access (ALOHA, CSMA), Controlled access (Reservation, Polling, Token Passing), Channelization (FDMA,TDMA, CDMA), Traditional Ethernet, Fast Ethernet, Gigabit Ethernet	(8)
4.	NETWORKING AND INTERNETWORKING DEVICES: Repeaters, Bridges, Type of Bridges, Routers, Routing concepts, Gateways, Internetworks, ARP, IP, ICMP, IPV6, Unicast routing, Unicast routing protocol, Multicast routing, Multicast routing protocols, introduction to Security, Cryptography, and SSL, Security - firewalls, DoS, etc.	(8)
5.	TRANSPORT LAYER: Process to process delivery, User datagram protocol (UDP), Multiplexing and Demultiplexing, Connection less transport (UDP), Principles of reliable data transfer, Transmission control protocol (TCP), Data traffic, Congestion, Congestion control, Quality of service	(5)
6.	APPLICATION LAYER: DNS, Electronics mail architecture and services, message formats and transfers, WWW architectural overview, static and dynamic web pages, HTTP, Digital audio and video	(4)
7.	WIRELESS NETWORKS: Cordless system, Wimax and IEEE 802.16 broadband wireless access standards, Mobile IP, Wireless Application Protocol, IEEE 802 Architecture, IEEE 802.11 Architecture and Services, IEEE 802.11 Medium Access Control, IEEE 802.11 Physical Layer, Other IEEE 802.11 Standards, Wi-Fi Protocol Access, Bluetooth and IEEE 802.15, Ad-hoc wireless and sensor networks.	(5)
8.	SWITCHING: Circuit Switching, Space division switching, Time division switching, Space and time division switching combinations, Packet switching, Data gram approach, Virtual circuit approach, message switching, Network Layer connection oriented and connectionless services, ATM, ISDN, MPLS, GMPLS.	(4)

Course Outcomes: By the end of this course, the students will be able to			
1.	Describe the computer network system and its communication.		
2.	Identify and compare the various layers of a computer network model, their role and characteristics.		
3.	Explain various routing algorithms and switching concepts.		
4.	Identify the various wireless network models.		

Sugg	Suggested Books:				
Sr. No.	Name of Book/Authors/Publisher	Year Of Publication /Reprint			
1.	Introduction to Data Communication & Networking by Behrouz Forouzan, Tata McGraw Hill Edition	2012			
2.	Data and Computer Communications by William Stallings PHI 8 th Edition.	2007			
3.	Data Communication and Distributed Networks, Ulylers D. Black, PHI 3rd ed.	1999			
4.	Computer Networks, Andrew S.Tanenbaum, , PHI 2nd ed.	2000			

Course Name		Advanced Communication Systems
Course Code	•••	EC6014
Credits	:	4
LTP	:	3-1-0

Course Objectives: By the end of this course, the students should be able to explain the block diagram of digital communication system, various digital modulation techniques, and describe the basic concepts of information theory and coding. The students should also be able to identify and compare various fields of advanced communication and their applications.

Т	otal No. of Lectures: 42	
L	ecture wise breakup	No. of Lectures
1.	INTRODUCTION Digital communication system (description of different modules of the block diagram), Complex baseband representation of signals, Gram-Schmidt orthogonalization procedure. M-ary orthogonal signals, bi-orthogonal signals, simplex signal waveforms.	06
2.	DIGITAL MODULATION TECHNIQUES Pulse amplitude modulation (binary and M-ary, QAM), Pulse position modulation (binary and M-ary), Carrier modulation (M-ary ASK, PSK, FSK, DPSK), Continuous phase modulation (QPSK and variants, MSK, GMSK).	10
3.	INFORMATION THEORY AND CODING Concept of information, Entropy, Mutual information, Source encoding, channel encoding, channel capacity	05
4.	OPTICAL COMMUNICATION Block diagram of Optical fiber communication system, Introduction to light, Optical fiber characteristics and classifications, losses and dispersion, Fiber optic components and systems, Installation, testing, and repair	06
5.	MOBILE COMMUNICATION Cellular concepts, mobile radio propagation, wireless channel modelling, Frequency reuse concept, cellular coverage planning	06
6.	MICROWAVE AND RADAR ENGINEERING Generation of Microwaves (Klystron, Magnetron), Applications of microwave (Radar, Satellite), Basic principal block diagram and operation of radar (Pulse CW, Doppler effect), Radar range equation, Pulse repetition frequency (PRF), Range ambiguities. Applications of radar	09

Course Outcomes : By the end of this course, the students will be able to			
1.	Describe advanced communication systems.		
2.	Apply the underlying principles for up-to-date examples of real world systems.		
3.	Emphasize on modern digital data transmission concepts and modulation techniques.		
4	Solve problems relevant to communication channel, capacity and coding		
5	Build a basis for subsequent related courses such as optical, mobile communication, and microwave and radar Engineering.		

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1.	Digital Communication by John G. Proakis and Masoud Salehi, Fifth edition, McGraw-Hill Higher education	2008	
2.	Principles of Communication Systems by Taub and Schilling Tata McGraw-Hill Education, 3 rd edition	2008	
3	Elements of Information Theory by Thomas M. Cover, Joy A. Thomas "A Wiley- Interscience publication, 2nd Edition	2005	
4.	Electronics Communication Systems by George Kennedy and Bernard Davis, Fourth edition, TMH	2009	
5.	Wireless communication, principal &practice, T.S Rappaport. 2nd Edition, PHI	2007	
6.	Microwave devices and circuits (3rd Edition) by Samuel Liao, PHI	1996	
Course Name	:	MOBILE AND CELLULAR COMMUNICATIONS	
-------------	---	------------------------------------	
Course Code	:	EC6015	
Credits	:	4	
LTP	:	302	

By the end of this course, students should be able to familiarize with the evolution and basics of wireless communication technology, identify and explain the cellular concepts, like, frequency reuse, co-channel interference, cell splitting, and in-depth knowledge about the concept of handoff. The student should have an introduction to very-small-aperture terminal satellites and its applications in mobile communications.

	Total No. of Lectures	5-42
Lectu	ıre wise breakup	Number of Lectures
1	INTRODUCTION TO CELLULAR SYSTEMS: A basic cellular system, performance criteria, uniqueness of mobile radio environment, operation of cellular system, planning a cellular system, analog& digital cellular systems.	3
2	CELLULAR WIRELESS COMMUNICATION SYSTEM: Second generation cellular systems: GSM specification and air interface- specification of various units, GSM Architecture, 2.5 G systems: GPRS/EDGE specifications and features, 3G systems: UMTS & CDMA 2000 standards and specifications.	5
3	ELEMENTS OF CELLULAR RADIO SYSTEMS DESIGN: General description of the problem, Concept of frequency reuse channels, co-channel interference reduction factor, desired carrier to interference ratio (C/I) for an omni-directional antenna system, cell splitting, consideration of the components of cellular systems.	7
4	INTERFERENCE: Introduction to co-channel Interference, real time co- channel interference, co-channel measurement design of antenna system, antenna parameter and their effects, diversity receiver in co-channel interference, Equalization, Equalization inCommunication Receiver, RAKE Receiver.	6
5	CELL COVERAGE FOR SIGNAL & TRAFFIC : General introduction, Obtaining the mobile point to point model, propagation over water or flat open area, foliage loss, propagation near in distance, long distance propagation, point to point prediction model characteristics, cell site, antenna heights and signal coverage cells, mobile to mobile propagation	6
6	FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Frequency Management, Frequency spectrum utilization, Channel Assignment definition and its types, i.e., fixed channel assignment, non-fixed channel assignment, traffic and channel assignment.	5
7	HANDOFFS, DROPPED CALLS : Need of handoffs, types of handoffs, i.e., based on signal strength and carrier to interference ratio (C/I), Initiation, delay and queuing of handoffs, Intersystem handoffs, dropped call rates & their evaluation.	4
8	EARTH STATION AND VERY-SMALL-APERTURE TERMINAL SATELLITES (VSATS): Spacecraft Structure, Primary Power, Various Subsystem of a Satellite, Transmitter, Receivers, Components of Earth Station, VSAT- type, VSTA uses in Mobile Communications.	6

Serial Numb er	List of Experiments	No. of Turns
1	To study GSM Architecture and network topologies	1
2	To study and estimate call flow (Voice and Data)	1
3	To comprehend the intra-circle roaming functionality	1
4	To estimate, calculate and design link budget.	1
5	To do frequency planning of the network along with neighbor definition	1
6	To estimate and design concept of frequency reuse	1
7	Create a scenario to study the bottleneck of the transmission rate of a link	2
8	To study optimization strategies to improve grade of service	2
9	To estimate various types of interference.	2
10	To study the effect of fading and measure the fading margin of a received signal on spectrum analyzer	2

Cour	Course Outcomes: By the end of this course the students will be able to		
1	Explain the fundamental concepts and evolution of mobile communication systems.		
2	Learn cellular system design basics and frequency management techniques, especially the concept of frequency reuse, co-channel interference, cell splitting.		
3	Understand co-channel interference and describe interference reduction strategies, i.e., equalization.		
4	Determine the cell coverage area for different natural and man-made terrains		
5	Appreciate the concept of handoffs in mobile communication systems.		
6	Understand the working and design of very-small-aperture terminal satellites and their applications in mobile communications		

Sug	Suggested Books:					
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint				
1	Mobile Cellular Telecommunications; William, by C Y Lee. 2nd Edition McGraw Hill	2006				
2	Wireless Digital Communications : Modulation and Spread Spectrum Applications , by Dr. Kamilo Feher. 2nd Edition, PHI	2015				
3	Wireless communication, Principles &Practice, by T.S Rappaport. 1 st Edition, Pearson	2010				
4	Digital Satellite Communication, by Tri T. Ha. 2nd Edition, McGraw Hill	2017				

Course Name	:	DIGITAL SIGNAL PROCESSING	
Course Code	:	EC6016/EC5004	
Credits	:	4	
L T P	:	3 - 1 - 0	
Course Objectives:			

By the end of this course, students should be able to define concepts of DSP such as LTI Systems, stability, causality and differential equations, explain various transformation and design techniques and implementation of IIR and FIR filters.

	Total no of lectures:42		
Lect	ure wise breakup	No.of	
		Lectures	
1	REPRESENTING SIGNALS BY USING DISCRETE TIME COMPLEX	(07)	
	EXPONENTIALS: THE Z- TRANSFORM:		
	Z-Transform and its properties, Region of convergence and its		
	properties, inverse z transform, transfer function, causality and stability.		
2	TRANSFORMATION OF DISCRETE SIGNALS	(08)	
	Typical applications of DSP, Discrete Fourier Transform (DFT) and its		
	properties, IDFT, Fast Fourier Transform (FFT), Decimation in time and		
	decimation in frequency algorithms, IFFT		
3	DIGITAL FILTERS	(05)	
	Recursive and non-recursive systems, Frequency domain		
	representation of discrete time systems, systems function, Ideal low		
	pass filter		
4	DESIGN OF IIR FILTERS	(09)	
	Impulse invariance transformation technique, Bilinear transformation,		
	Design of IIR Filters using Butterworth, chebyshev and elliptic filter,		
	Digital frequency transformation		
5	DESIGN OF FIR FILTERS	(08)	
	Design of FIR filters using Window technique, frequency sampling		
	technique, Equiripple Approx. technique, comparison of IIR and FIR		
	filters		
6	REALIZATION OF DIGITAL SYSTEMS	(05)	
	Block diagrams and signal flow graphs for FIR and IIR systems, Direct		
	form, cascade and parallel form realization of FIR and IIR systems.		

Course Outcomes: By the end of this course student will be able to:				
1.	Define LTI systems, DTFT, FFT			
2.	Explain various design techniques of IIR and FIR digital filters			
3.	Explain the realization of IIR and FIR filters			
4.	Outline the concept of DSP processor			

Suggested Books:				
Sr. No.	Name of Book/Author/Publisher	Year of Publication/ reprint		
1.	Digital Signal Processing by Proakis & Manolakis, Pearson Education	2006		
2.	Digital Signal Processing by A.V Oppenheim and R.W.Schafer, Pearson Education	2006		
3.	Digital Signal Processing by E C Ifeachor and B W Jervis.	2001		
4.	Digital Signal Processing by S Salivahanan, A Vallavraj, C Gyanapriya, TMH	2011		
5.	Digital Signal Processing By S. K. Mitra, TMH	2010		

Course Name	:	ANALOG AND DIGITAL ELECTRONICS
Course Code	:	EC6021/EC5002
Credits		4
LTP		3-1-0

Total No. of Lectures – 42

Course Objectives:

At the end of this course, the student should be able to identify active and passive components and to solve simple electronic circuits. The student should also be able to explain construction, operation, characteristics and biasing of diodes, transistors, FETs and applications of operational amplifier. The student should be able to demonstrate the ability to use logic gates, Basic Boolean laws, minimization techniques for the designing of various combinational circuits. The student should also be able to describe operation, characteristic equations, excitation table of various flip flops and explain the conversion of flip flops.

Lecture wise breakup

No. of Lectures

1	Circuit Theory Fundamentals	(4)
	Electrical quantities, Electrical components, Circuit laws and theorems, Circuit	
	analysis, Measurement equipment	
2	Diodes and Diode Circuits	(4)
	Diode, Diode models, Rectifier circuits, Clippers, Clampers,	
3	Bipolar Junction Transistors	(7)
	Junction transistor, Regions of operation, Transistor configurations, Current	
	components in a transistor, Transistor as an amplifier, characteristics of CB,	
	CE and CC configuration, Frequency Response of single stage CE amplifier,	
4	Introduction to feedback amplifiers and oscillators	(4)
4	Field Effect Transistors: Introduction, FET Construction, types of FET, Characteristics of FETs MOSEET: types and working principle	(4)
5	OPERATIONAL AMPLIFIERS.	(5)
2	Block diagram of a typical Onamp. Ideal Onamp. Open loop Opamp	(3)
	configurations, Opamp Characteristics, closed loop Opamp configurations,	
	voltage series feedback or Non inverting amplifier, Voltage shunt feedback or	
	inverting amplifier, Summing scaling and averaging amplifiers, Subtractor,	
	voltage to current converter, current to voltage converter, Integrator,	
	Differentiator, Comparator.	(4)
0	Minimization Techniques	(4)
	Sum of Products and Products of Sum forms, Minterms & Maxterms, Karnaugh	
_	Map for two, three, four five and six variables.	
7	Combinational Circuit Design	(4)
	Half adder, full adder, subtractor, BCD adder, comparator, code converter,	
	encoder decoder, multiplexer, demultiplexer, parity detector and generator	
8	Flip Flops	(4)
	1-bit memory cell, clocked and unclocked flip flops, S-R Flip flop, D flip flop,	
	JK Flip flop, T flip flop, edge triggered flip flop, race around condition, Master	
	slave flip flop.	
9	Counters And Shift Registers	(5)
	Ripple counter, design of Mod-N ripple counter, synchronous counter, decade	
	counter, serial in serial out shift register, serial in parallel out shift register,	

	parallel in serial out shift register and parallel in parallel out shift register, bidirectional shift register, universal shift register.		
10	Digital Memories & Programmable Logic		
	ROM, RAM (static and dynamic), PROMS, PLA and PAL		

Course Outcomes: By the end of this course, the students will be able to

1. Describe the behavior of electronic devices such as diodes, transistors and FETs.

- 2. Explain basic building blocks of operational amplifier, their functioning and demonstrate its various applications in analog systems.
- 3. Identify the components of combinational and sequential circuits and their
- 4. operation.
 - Compare the different memories.

••

Sugg	Suggesteu Dooks.		
Sr.	Name of Book/Authors/Publisher	Year Of	
No.		Publication	
		/Reprint	
1.	Integrated Electronics, Millman & Halkias, TMH.	2008	
2.	Electronics Devices & Circuit Theory, RL Boylestead & L	2009	
	Nashelsky, PHI		
3.	Circuits and Networks: Analysis and Synthesis, Sudhakar and	2009	
	Shyam Mohan, TMH		
4.	Electronics Circuit Analysis and Design, Donald A. Neamen, Tata	2008	
	McGraw Hill		
5.	Digital Design by Morris Mano, PHI, 4 th edition	2008	
6.	Digital principles and Applications, by Malvino Leach, TMH	2011	

Т

Course Name	:	INTRODUCTION TO PRINTED CIRCUIT BOARD
Course Code	:	EC6022
Credits	:	4
L T P	:	302

The main aim of this course is to make students learn different PCBs for analog, digital, biomedical, wearable electronics, high frequency and power electronics applications. They will learn the electronic manufacturing and packaging aspects with the electrical, mechanical and thermal design considerations required for optimize designing of PCB

	Total No. of Lecture	es – 42
Lectu	re wise breakup	Number
		of
		Lectures
1	Introduction to PCB designing concepts What is PCB, Difference between PWB and PCB, Types of PCBs: Single Sided (Single Layer), Multi-Layer (Double Layer), PCB Materials, Active Components (Diode, Transistor, MOSFET, LED), Passive components (Resistor, capacitor, inductor), IC's. PCB Advantages, components of PCB, Electronic components, Surface Mount Devices (SMD). Classification of PCB - single, double, multilayer and flexible boards, Manufacturing of PCB, PCB standards.	10
2	Design of PCB PCB layout design, Prototype Designing (Design Rule Check, Design for Manufacturing), PCB Making (Printing, Etching, Drilling), Assembly of components,PCB Layers: Electrical Layers (Top, Middle and Bottom), Mechanical (Drill, Board Outlines); Documentation Layers (component outlines, reference designation, text); Heat sinks and Package Density, Footprint, pad stack, Vias, Track (length, angle, joint, size),	12
2	Materials and fabrication of PCB: Standard FR-4 Epoxy Glass, Multifunctional FR-4, Tetra Functional FR-4, BT Epoxy Glass, copper clad laminates materials of copper clad laminates, Laminates characteristics and properties types of laminates, soldering techniques. Film master preparation, Image transfer, photo printing, Screen Printing, Plating techniques etching techniques, Mechanical Machining operations, Lead cutting and Soldering Techniques, Testing and quality controls.	12
3	PCB Compliance: Environmental, Thermal management, Electromagnetic (Dielectric Breakdown, Static Charge Generation, Human Body Model, Static Discharge, ESD Protection)	8

List	of Experiments:	
Sr. No.	Experiments	No. of turns
1	Types of PCBs	1
2	Different materials for PCBs	2
3	Components and their types (SMD), through hole, Vias	3
4	Software for PCB design: Altioum Designer software (student version) or KiCAD (open	6
	source) or Autodesk Eagle or ORCAD PCB design professional	
5	Development of PCB Board	2

Course Outcomes: By the end of the course, the student must be able to:

1	Learn electronic manufacturing and packaging aspect.
2	Understands the electronics packaging including package styles or forms, hierarchy and methods of
	packaging necessary for various environments.
3	Understand the materials requirement and different optimization process of PCB design.
4	Design and develop PCB with MSI circuits for different applications.

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint
1	Fabricating Printed Circuit Boards, Jon Varteresian, Newnes (Elsevier)	202
2	Printed circuit board design ,fabrication assembly and testing, R. S. Khandpur, Tata Mc Graw Hill	2005
3	EMC and Printed circuit board, Design theory and layout Made Simple, Mark I Montrose, Wiley-IEEE Press	2000
4	Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging, Xing-Chang Wei, CRC Press	2017
5	Fundamentals of Microsystems Packaging, Rao R. Tummala, McGraw Hill, NY	2001
6	Introduction to System-on-Package: Miniaturization of the Entire System, Rao R Tummala & Madhavan Swaminathan, McGraw Hill	2008
7	K. Mitzner Complete PCB Design Using OrCad Capture and Layout, Elsevier,	2011
8	Printed circuit Board Design and technology, Walter C. Bosshart, Tata Mcgraw Hill	1984
9	Making Printed Circuit Boards, J. Axelson, TAB/McGraw Hill,	1993
10	Recent Published research papers	

Course Name	:	ELECTRONIC MEASUREMENTS AND INSTRUMENTATION
Course Code	:	EC6023
Credits	:	4
L T P	:	3-1-0

At the end of this course, the student should become aware of the principle of working of various instruments used to measure basic electronic parameters. The student should be aware of the design features of some of the instruments and transducers. The student should be able to identify and describe basic instrumentation systems.

	Total No. of Le	ectures – 42
Lect	ure wise breakup	No. of Lectures
1.	INTRODUCTION STATISTICAL:	(4)
	Basic characteristics of measuring devices, types of errors and their	
	statistical analysis, accuracy, precision and ratings of instruments,	
	conversion.	
2.	ANALOG INSTRUMENTS:	(5)
	Electromechanical instruments - moving, coil, moving iron,	
	electrodynamics, rectifier, electrostatic instruments, current voltage and	
	power measurements, induction type energy meter, q-meter frequency.	
3.	TRANSDUCERS:	(6)
	Actuating mechanisms, electric types of transducers – self generating,	
	piezo electric, photo. Variable parameter transducers – variable	
	resistance strain gauges, variable capacitance $-LVDI$, magnetos ruction	
Δ	OPTOFLECTRONIC MEASUREMENTS AND	(7)
т.	BIOTECHNOLOGY INSTRUMENTS:	(7)
	Radiometry and photometry, laws of illumination, optical transducers.	
	light modulating techniques, fiber optic sensors, ECG, EEG,	
	cardiovascular measurements, pacemakers, instrumentation for	
	diagnostic x-rays.	
5.	SIGNAL GENERATORS AND ANALYZERS:	(6)
	Sweep frequency generator, frequency synthesized signal generator and	
	function generator, wave analyzer harmonic distortion and spectrum	
6	analyzer.	(7)
6.	INDICATING AND RECORDING SYSTEMS: Digital fragmanay counters, X V and X T recorders, general purpose	(7)
	oscilloscopes delayed time base sampling and digital storage type	
	oscilloscopes, uclayed time base, sampling and digital storage type	
7.	DAS AND MICROPROCESSOR BASED INSTRUMENTATION:	(7)
	Modern Digital DAS Systems, Microprocessor Based Systems like	(-)
	multifunction test instrument, signature analyzer, logic analyzer,	
	temperature monitoring system, water level sensing system, interface	
	standards.	

Course Outcomes: By the end of this course, the student should be able to:		
1.	Operate various electronic instruments required for measuring electronic parameters	
2.	Troubleshoot the instruments associated.	
3.	Outline various digital DAS systems and microprocessor Based Systems.	

Sugge	Suggested books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ reprint			
1.	Modern Electronics Instrumentation and Measurement Techniques – Albert D Helfrick, William D Cooper, Pearson Ed	2005			
2.	Electronic Measurement and Instrumentation by Bernard M. Oliver, J.M. Cage, McGraw Hill	1971			
3.	Instrumentation, Measurement and Feedback – B Jones	1977			
4.	Electronic Measurement by Terman and Petizt	2005			
5.	Biomedical Instrumentation and Measurements – Leslie Cromwell, Weibell, Pfeiffer, second edition,Prentice Hall Mark	2003 (Edition)			
6.	A Courser in Electrical and Electronic Measurements and Instrumentation – A K Sawney	1996			

Course Name	:	MEMS AND MICROSYSTEMS
Course Code	:	EC6024
Credits	:	4
LTP	:	310

Course Objectives: By the end of this course students should be able to explain the evolution, basics of MEMS and microsystems technology, summarize the basic concepts and design methodology of MEMS and Microsystems for various applications.

Total No. of Lectures -		s – 42
Lectu	ıre wise breakup	Number of
	OVEDVIEW OF MEMCAND MICDOCVCTEMC	Lectures
1	UVERVIEW OF MEMIS AND MICROSYSTEMS Introduction Microsystems and Microelectronics the	12
	Multidisciplinary Nature of Microsystem design and manufacture. Application	
	of MEMS in various industries. MEMS and Miniaturization: Scaling laws in	
	miniaturization: Introduction to Scaling, Scaling in: Geometry, Rigid Body	
	dynamics, Electrostatic forces, Electromagnetic forces, Electricity, Fluid	
	substrate material mechanical properties of Silicon Silicon Compounds (SiO2	
	Si3N4, SiC, polySi, Silicon), Piezoresistors, GaAs, Piezoelectric crystals,	
	Polymers, Packaging Materials, Surface Plasmon effects.	
	MICROMACHINING PROCESSES	10
	Overview of microelectronic fabrication processes used in MEMS, Bulk	
2	Micromachining – Isotropic & Anisotropic Etching, Comparison of Wet vs	
	Dry etching, Surface Micromachining –General description, Processing in	
	general, Mechanical Problems associated with Surface Micromachining,	
	Introduction to LIGA process, Introduction to Bonding. Assembly of 3D	
	MEMS - foundary process.	
	MICROSYSTEMS & MEMS DESIGN	10
	Design Considerations: Design constraints, Selection of Materials, Selection	
3	of Manufacturing processes, Selection of Signal Transduction,	
	Electromechanical system, packaging. Process design, Mechanical Design –	
	Thermo mechanical loading, Thermomechanical Stress Analysis, Dynamic	
	Analysis, Interfacial fracture Analysis, Mechanical Design using Finite	
	Element Method, Micromachining Technology – Surface and Bulk	
	Micromachining, Micromachined Microsensors.	4.0
	DESIGN CASE USING CAD. PRINCIPLES OF MEASURING	10
	MECHANICAL QUANTITIES	
1	Transduction from Deformation of Semiconductor Strain gauges: Piezo	
4	resistive effect in Single Crystal Silicon, Piezo resistive effect in Poly silicon	
	Thin films, Transduction from deformation of Resistance. Capacitive	
	Transduction: Electro mechanics, Diaphragm pressure sensors. Structure and	
	Operation of Accelerometers, Resonant Sensors, Thermal Sensing and	
	actuation.	

Cour	Course Outcomes: By the end of the course, the student must be able to:		
1	Explain the operation principles of advanced micro- and nanosystems.		
2	Describe the technology to fabricate advanced micro- and nanosystems.		
3	Apply a concept of a micro- and nano-device into a real device considering the scaling laws and boundaryconditions involved.		
4	Present the basics of implementation of MEMS into products.		

Sug	Suggested Books:				
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicati on/ Reprint			
1	Microsystem Design (5 th Edition) by Stephen D. Senturia, Kluwer Academic Publishers	2003			
2	Micro Technology and MEMS by M. Elwenspoek and R. Wiegerink, Springer,	2000			
3	Fundamentals of Microfabrication and Nanotechnology (3 rd Edition) by Marc Madou, CRC Press	2011			
4	MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering (2 nd Edition) by Tai-Ran H Su, Tata Mcgraw.	2008			
5	Electromechanical Sensors and Actuators, Ilene J. Busch-Vishniac, Springer	2008			

Course Name	•	Electronic Device Fabrication
Course Code		EC6025
Credits	••	4
LTP		3-0-2

Course Objective: To provide knowledge of device physics/operation, technologies and issues in nanoscale CMOS, other emerging devices and futuristic material based interconnects. Students earn the basic understanding of nano electronics and followed by the advanced understanding of the nano-micro fabrication techniques.

	Total number of Lectures - 42		
Le	cture wise breakup	Number of Lecture	
1	EMERGING NANOSCALE DEVICES and INTERCONNECTS History of semiconductor devices, Moore's law, feature size and minimum feature size trend. Si and hetero-structure nanowire MOSFETs, carbon nanotube MOSFETs, Tunnel FET, quantum wells, quantum wires and quantum dots, Resonant tunneling devices, Single electron transistors, Junction-less transistors, Spintronics devices. Optical interconnects, Superconducting interconnects, Nanotechnology interconnects, Silicon nanowires, Carbon nanotube (CNT) and Graphene nanoribbon (GNR) interconnects, performance comparison of CNTs, GNRs and copper interconnects.	8	
2	Material Preparation Material properties, crystal structure, lattice, basis, planes, directions, angle between different planes, phase diagram and solid solubility, Crystal growth techniques, Epitaxy, Clean room and safety requirements. Oxidation: wet and dry oxidation, Deal-Grove model, Diffusion process, Ion implantation, modeling of Ion implantation, statistics of ion implantation, rapid thermal annealing, SIMS.	10	
3	NANO-FABRICATION Epitaxy and Thin Film Deposition, Film growth: PVD Processes Evaporation (Thermal and ebeam), Chemical Growth Fundamentals of CVD growth Processes, Modern variants: MOCVD, PECVD and ALD Spin Coating.	7	
4	LITHOGRAPHY AND ETCHING TECHNIQUES Optical lithography, resolution and depth of focus, resist processing methods and resolution enhancement, advanced lithography techniques for nanoscale patterning, Wet etching, selectivity, isotropy and etch bias, common wet etchants, orientation dependent etching effects; Introduction to plasma technology, plasma etch mechanisms, selectivity and profile control plasma etch chemistries for various films, plasma etch systems.	10	
5	CHARACTERISATION TECHNIQUES Morphological characterization: Raman, XRD, SEM, AFM; Electrical Characterization: Electrical measurement techniques, two probe and four probe measurement technique; RF characterization	7	
List of Experiments:		Number of Turns	
1	Thin film metal deposition using E-beam Evaporation System	2	
2	Forming Electrode pattern using E-beam/thermal vaporization technique 2		
3	Material synthesis and composites formation	2	

4	Nanomaterial synthesis using hydrothermal technique	2
5	Deposition of compound metal oxides using sol-gel/spin coating technique	2
6	Measurement of Electrical properties of thin film electronic device	2
7	Measurement of junction characteristics of fabricated thin film semiconducting	3
	diodes such as PN, Schottky, etc.	

Cou gaini	Course Outcomes: Upon successful completion of this course, the enrolled students will be gaining the following knowledge, skills and competences:		
1	An in-depth knowledge of CMOS Scaling		
2	Futuristic material based interconnects such GNRs, CNTs		
3	An in-depth knowledge of thin film deposition techniques		
4	Understand operation of different fabrication tools and etching techniques		
5	Characterize and study the properties of material		

Suggested Books :		
Sr.No	Title of Book/Name of Author(s)/Publisher	Year of Publication/ Reprint
1	Sze, S.M., "VLSI Technology", 4th Ed., Tata McGraw-Hill	1999
2	Chang, C.Y. and Sze, S.M., "ULSI Technology", McGraw-Hill	1996
3	Nano: The Essentials: Understanding Nanoscience and Nanotechnology by T. Pradeep,McGraw Hill Professional	2008
4	Gandhi, S. K., "VLSI Fabrication Principles: Silicon and Gallium Arsenide", John Wiley and Sons	2003

Course Name	:	Nanoelectronic Devices
Course Code	:	EC6026
Credits	:	4
LTP	:	310

By the end of this course students should be able to describe the evolution and basics of Nano electronic devices and its fabrication, which includes the various synthesis and nanofabrication process and their applications. Total number of Lectures - 42

Lectu	re wise breakup	Number of Lecture
1	SEMICONDUCTOR NANOPARTICLES: Size and shape control of semiconductor Nanoparticles and their characterization; Study of their properties: optical and electronic and its application; Synthesis and application of Core-Shell structured semicoductor nanoparticles.	10
2	NANOELECTRONICS: Device scaling, Moore's law, limitations, role of quantum mechanics, Feynmans nanobot; Nanostructures: Impact, technology and physical consideration; Mesoscopic observables: Ballistic transport, phase interference	12
3	SPINTRONICS: Spin, propagation, detection, spin FETs; Fluxtronics: Fluxon, ratchet effect, rectification, flux-QUBIT; Nano-fabrication techniques: Top-down and bottom-up strategies, advantages/disadvantages/ limitations, e-beam lithography, Focussed Ion beam milling, self-organized structures, laser nano-patterning, nano-imprint, electrochemical synthesis, Fabrication of OEDs etc.; Special topics: Graphene, return to Feynmann's nanobot, future prospects.	10
4	NANO-FABRICATION: High resolution nano lithography, E-beam and nano imprint lithography, Dip-Pen lithography, AFM Lithography. Nano characterization: High Resolution TEM, Scanning Probe Microscopes: Atomic Force Microscope and Scanning Tunneling Microscope, Nano manipulator, Lab on a Chip concept, Packing of Electronics devices (wire bonding, device encapsulation).	10

Course Outcomes:	
1	Outline the importance of nano dimensional materials and their applications.

2	Realize and explain the growth of nano-materials.
3	Characterize and study the properties of material
4	Understand the physical laws and effects that are active in the nano-world. The relationship between these laws and the extraordinary properties of nanodevices and demonstrate the applications of nano electronic devices

Suggested Books :		
Sr.No	Title of Book/Name of Author(s)/Publisher	Year of Publication/Reprint
1	Introduction to Nanotechnology First Edition Risal Singh & shipra mital gupta Oxford India press	2016
2	Fundamentals of Microfabrication and Nanotechnology (3rdEdition) by Marc Madou, CRC Press	2011
3	Nano: The Essentials: Understanding Nanoscience and Nanotechnology by T. Pradeep,McGraw Hill Professional	2008
4	Handbook of Nanotechnology (3rd Edition) by Bhushan, Springer	2007

Course Name	:	PLC DESIGNING
Course Code	:	EC6031
Credits	:	4
LTP	:	310

The main aim of this course is to make students learn programmable logic controllers (PLCs), process control algorithms, interfacing of sensors and other I/O devices, simulation and networking.

Lectures – 42

Total No. of

	Lecture wise breakup	Number of
	-	Lectures
1	PLC INTRODUCTION: Programmable Logic Controllers (PLCs): Introduction; definition & history of the PLC; Principles of Operation; Various Parts of a PLC: CPU & programmer/monitors; PLC input & output modules; Solid state memory; the processor; I/O modules; power supplies. PLC advantage & disadvantage; PLC versus Computers, PLC Application. Programming equipment; proper construction of PLC ladder diagrams; process scanning consideration; PLC operational faults.	8
2	PLC HARDWARE COMPONENTS The I/O section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O specifications, The CPU, Memory design, Memory Types, Programming Devices, Selection of wire types and size. Various INPUT /OUTPUT Devices and its interfacing with PLC.	8
3	PLC PROGRAMMING Processor Memory Organization, Program Scan, PLC Programming languages, Relay type instructions, Instruction addressing, Branch Instructions, Internal Relay Instructions, Programming Examine if Closed and examine If Open instructions, Entering the ladder diagram, Modes of operation.Creating Ladder Diagrams from Process Control Descriptions.Ladder diagram & sequence listing; large process ladder diagram construction, flowcharting as programming method, Industrial Examples, Programming Timers and Programming Counters.	10
4	PLC INSTRUCTIONS Bit Logic Instructions, Clock, Different Logical operation Instructions, Different Integer Math Instructions, Different Conversion Instructions, Different Comparison Instructions, Program Control Instructions, Sequencer and shift register instructions, Different Interrupt Instructions, Data Handling Functions,	8
5	PLC NETWORKING Introduction, Levels of Industrial Control, Types of Networking, Network communications.PLC Installation practices, Editing and Troubleshooting, PLC Enclosures, Electrical Noise, Leaky Inputs and Outputs, Grounding, Voltage variations and Surges, Program Editing, Programming and Monitoring, Preventive Maintenance, Troubleshooting, Connecting PC with PLC, Alternative Programming Languages, Various Brands of PLCs and their revolution.	8

Cours	Course Outcomes: By the end of the course, the student must be able to:		
1	Compare conventional sequential control with programmable logic control system		
2	Develop programs using different PLC programming languages for sequential and continuous		
	process		
3	Interface analog and digital input/ output devices with PLC using different communication protocol		
4	Test the PLC based system and troubleshoot the errors associated with it.		

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint
1	Programmable logic controller by Frank D. Petrusella, Tata McGraw-Hill	2005
2	Introduction to programmable logic controller by Gary dunning, Thomson Asia Pte Ltd	2005
3	Programmable Logic Controllers: Principles and Applications by John W. Webb and Ronald A. Reis, Prentice –Hall India	1994
4	Programmable Logic Controllers by W. Bolton, Elsevier	2015
5	Programmable Controllers An engineer's guide by E.A.Parr, Elsevier	2003
6	S7-200, S7-300, PLC Manual of Siemens for Instructions	2008
7	Recent Published research papers	

Course Name	:	ARDUINO PROGRAMMING AND RASPBERRY PI
Course Code	:	EC6032
Credits	:	4
LTP	:	310

The objective of this course is to familiarize the students in Embedded System Design using Arduino and Raspberry pi.

Total No. of Lecture		es – 42
Lectu	are wise breakup	Number of
		Lectures
	Embedded System design: Basics.	
1	Introduction to embedded systems, Components of embedded system. Advantages and applications of embedded systems, Examples of real time embedded systems and how they are manufacturedindustry ready, Different Microcontroller Architectures (CISC, RISC, ARISC), Internal Resources & Hardware Chips in Details, History of AVR Microcontrollers and Features, Memory Architectures (RAM/ROM).	10
2	Learning Arduino Platform:	10
2	Introduction to ARDUINO, ARDUINO History and Family, General Programming and Hardware Interfacings with Arduino, The basic sensors and actuators using Arduino, Controlling embedded system based devices using Arduino.	
	Getting Started with Raspberry Pi: Basic functionality of the Raspberry Pi board and its Processor, setting and configuring the board, differentiating Raspberry Pi from other platform like arduino, begal, asus	
3	thinker etc., Overclocking, Component overview.	10
4	Programming the Raspberry Pi: Introducing to Python programming language: Python Programming Environment, Python Expressions, Strings, Functions, Function Arguments, Lists, List Methods, Control Flow, Numpy, PIP (Python Installation Package) and customized libraries. Communication facilities on raspberry Pi (I2C, SPI, UART), working with RPil. GPIO library, Interfacing of Sensors and Actuators.	12

Cours	se Outcomes: By the end of this course, the students will be able to:
1	Understand how the Arduino platform works in terms of the physical board and libraries and theIDE
	(Integrated Development Environment).
2	Understand the working of Raspberry Pi, its features and how various components can be used with
	Pi.
3	It will also cover programming the Arduino using C code and accessing the pins on the board via the
	software to control external devices.

Sug	Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Margolis, M. Arduino cookbook: Recipes to begin, expand, and enhance your projects. O'Reilly Media, Inc.	2011	
2	ARM System Developer's Guide -Designing and Optimizing System Software by: Andrew N Sloss, Dominic Symes, Chris Wright;Elseiver	2004	
3	Mark Lutz, "Learning Python", O'Reilly Media, 5th Edition.	2016	
4	The official raspberry Pi Projects Book: https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf	NA	
5	Raspberry Pi Assembly Language RASPBIAN Beginners THIRD EDITION, CreateSpace Independent Publishing Platform.	2013	

Course Name	:	SENSING TECHNOLOGY
Course Code	:	EC6033
Credits	:	4
LTP	:	310

Course Objectives: The main aim of this course is to make students learn different sensing technology and methods for everyday useand it also highlights the future trend of sensors to mankind

	Total No. of Lectures	-42
Leo	eture wise breakup	Number of
		Lectures
1	BASIC of SENSORS: Principles of Sensing, Classification and Terminology of Sensors, Measurements. Some basic discussion about electric field, potential, capacitance, resistance etc.	4
2	PHYSICAL and CHEMICAL SENSORS: Sensors in Different Application AreaOccupancy and Motion Detectors; Position, Displacement, andLevel; Velocity and Acceleration; Force, Strain, and TactileSensors; Pressure Sensors, Temperature Sensors, Galvanic Cells,voltammetry, conductivity, Amperometric-bio sensors (Glucose, chloesterolsensor) and gas sensors, Optical sensor, Fiber optics	16
3	SEMICONDUCTOR SENSORS Sensors Based On Semiconductor Junctions, Resonant Sensors, SAW Sensors, Sensors Based On MOSFET Transistors, Charge-Coupled And CMOS Image Sensors, Ultrasonic-Based Sensors, Biosensors.	8
4	SENSORS and ACTUATORS FOR ROBOTICS Proximity Sensors, Electro-Optical Sensors, Capacitive Sensors, Magnetic Sensors, Electric Drives, motors	6
5	CASE STUDIES Applications of sensors in wearable devices, agricultural field, MEMS sensors and devices	8

Cours	Course Outcomes: By the end of the course, the student must be able to:	
1	Know different types of sensors.	
2	Develop wearable sensors for Healthcare, Wellness and Environmental Applications.	
3	Know the semiconductor sensors and materials for these applications.	
4	Present the basics of implementation of sensors into products.	

Sug	Suggested Books:				
Sr. No.	Sr. No. Name of Book/ Authors/ Publisher				
1	Biosensor: Principle and applications,Loic J Blum and Coulet, CRC Press, 2 nd edition	2010			
2	Chemical sensors and Biosensors, Brian R Eggins, John Wileysons Ltd,				
3	Optical Fiber Sensor Technology: Fundamentals, K. T. V. Grattan, T. Sun (auth.), K.	2000			
	T. V. Grattan, B. T. Meggitt(eds.) SpringerUS,				
4	Chemical Sensors: Introduction for Scientistsand Engineers, Peter Grundler, Springer,	2007			
5	Flexible Electronics: FromMaterials to Devices, GuozhenShen, Zhiyong Fan, 1st	2015			
	Edition, World Scientific Publishing Co,				
6	Sensors And Transducers, D. Patranabis, Prentice-Hall India, 2nd Ed., 2004.	2004			
7	Handbook of Modern Sensors: Physics, Designs and Applications, Jacob Fraden,	2004			
	Springer, 3rd Ed				

Course Name	:	MULTIMEDIA TECHNOLOGY
Course Code	:	EC6034
Credits	:	4
L T P	:	310

The objective of the course is to learn the technical details of common multimedia data formats, protocols, and compression techniques of digital images, video and audio content. It enables to learn about the significance of quality of service in multimedia networking.

Lec	ture wise breakup	No of
		lectures
1.	Introduction Media types (text, graphics, images, audio, speech, video, animation), Components of the multimedia system. Hypermedia and the Web. Hypertext, Multimedia Systems:	5
	Characteristics, Challenges, Desirable Features, Components and Applications, Trends in Multimedia	
2.	Media and Data Streams	6
	Discrete and Continuous Media, Analog and Digital Signals, Text and Static Data, Audio:	
	digitisingsound, Graphics, Images and Video, Multimedia Authoring Paradigms, Design	
	Issues in Multimedia Applications	
3.	Representation of Multimedia Objects	10
	Representation of Analog Signals, A/D: Sampling and quantization, Text: Font and their	
	representation (bitmap, true type), Graphics: Raster & Vector representation, aliasing	
	problems, Image: (bit depth, resolution, color (RGB, CMYK, HSB), introduction to	
	BMP, GIF, TIFF, PNG and JPEG formats), Audio (speech and wideband audio, sampling	
	rate and aliasing, quantization, introduction to MP3, WMA, WAV, MIDI etc.), Video	
	(frame rate and resolution, interlaced and non-interlaced video, colour planes (YCBCR,	
	YUV), Video broadcast standards (PAL, NTSC, SECAM), HD Video, 3D TV, Video	
	representation: AVI, MPEG, Quick Time, real video (.rm)	
4.	Storage Media	5
	Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards, DVD	
	and its standards, Multimedia Servers.	
5.	Introduction to Compression Technology	8
	Concept of lossy and lossless compression. Concept of rate-distortion characteristics,	
	Basics image compression (JPEG, JPEG 2000), Basics of Audio compression (MP3,	
	MP4), Basics of Video Compression (MPEG, H.264)	
6.	Multimedia Communication	4
	Building Communication Network, Application Subsystem, Transport Subsystem, QOS,	
	Resource Management, Distributed Multimedia Systems, Elements of (immersive/non-	
	immersive) Virtual Reality, Augmented Reality and Telepresence Applications, Mobile	
	technologies.	
7.	Multimedia applications	4
	Interactive television, video-on-demand, video conferencing, educational applications,	
	industrial applications, multimedia archives and digital libraries, media editors.	

Cou	Course Outcome: At the end of the course, students will be able to		
1.	Describe the types of media and define multimedia system.		
2.	Describe the process of digitizing (quantization) of different analog signals (text, graphics,		
	sound and video).		

3.	Use and apply tools for image processing, video, sound and animation.
4.	Apply methodology to develop a multimedia system.
5.	Apply acquired knowledge in the field of multimedia in practice and independently continue
	to expand knowledge in this field.

Suggested Books:			
Sr. No.	Name of Book/Authors/ Publisher	Year of Publication/Repr int	
1.	Multimedia Computing, Communications and Applications, Ralf Steinmetz and KlaraNahrstedt, Pearson Education	2012	
2.	Multimedia Systems, Rajneesh Aggarwal & B. B Tiwari, Excel Publication, New Delhi	2007	
3.	Multimedia making it work, Tay Vaughan, Tata McGraw-Hill,	2008	
4.	Fundamentals of Multimedia, Li & Drew, Pearson Education	2009	
5.	Introduction to Information Theory and Data Compression" Second Edition, Darrel Hankerson, Greg A Harris, Peter D Johnson, Chapman and Hall ,CRC press	2003	
6.	Multimedia Communications, Fred Halsall, Pearson Education	2006	

Course Name	:	MICROCONTROLLERS AND THEIR APPLICATIONS
Course Code	••	EC6035/EC5005
Credits	:	4
LTP	:	3-1-0

At the end of this course, student should be able to understand the functioning of microcontroller, and its interfacing, importance and need of support chips and their functioning. The students should also developprograms

for the various applications of microcontrollers.

Total No. of Lectures		es – 42
Lecture wise breakup		Number of
1	DIGITAL LOGIC:	2
1	Boolean algebra, Logic Families, TTL, Gates, Latches, Encoders & Decoders	
2	8051 MICRO CONTROLLERS:	3
2	Architecture, Pin configuration, SFR's, Memory, 8051 Addressing modes.	
	8051 INSTRUCTIONS:	6
	Introduction to 8051 assembly language programming: JUMP, LOOP and CALL	
3	instructions, Arithmetic instructions: Unsigned addition and subtraction, unsigned	
-	multiplications and Division, signed number concepts and arithmetic operations,	
	Logic And Compare instructions, BCD and ASCII Application Programs. Role of	
	Assembler.	-
	I/O PORT PROGRAMMING:	6
4	Single bit instruction programming, Single bit operations with CY, Reading Input	
	Pins Vs	
	Port latch, Programming 8051 timers, counter programming.	
5	INTERFACING WITH 8051:	5
	CEDIAL COMMUNICATION	2
6	SEKIAL COMMUNICATION	3
-	8051 connection to KS 252, 8051 serial communications Programming.	4
_	INTERRUPTS: Des sessenties Times Interments Des sessenties Enternel Handmans Interments	4
7	Programming Timer Interrupts, Programming External Hardware Interrupts,	
	DICISE EXMIT V.	2
8	Architecture of PIC 18F Microcontroller PIC18F instructions and assembly	3
	language	
	PROGRAMMING MODEL:	7
9	PIC18F programming model instruction set instruction format Data conv	•
	arithmetic, branch, logical, bit manipulation and multiply-divide instructions. Stacks,	
	subroutines and macros. Role of Assembler.	
10	INPUT/OUTPUT PORTS AND INTERFACING:	3
10	PIC18 I/O ports and interfacing with peripherals.	-

Course Outcomes: By the end of this course student will be able to:		
1	Explain the architecture and functioning of various microcontrollers in detail.	
2	Analyze interfacing, I/O communication and interrupts of these microcontrollers.	
3	Develop programs for the various applications of microcontrollers	

Sug	Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint		
1	The 8051 Microcontroller and Embedded System by- Muhammad Ali Mazidi, Janice Gillespie Mazidi, Pearson EducationPublications.	2007		

2	Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 Microcontroller Family), Ramesh Gaonkar, Penram International	2007
	Publishing, 2007 edition.	

Course Name	:	MICROPROCESSOR AND MICROCONTROLLER
Course Code	:	EC6036/EC5006
Credits	:	4
LTP	:	310

At the end of the course, the students should be able to explain the architecture and programming of 8085 microprocessor and 8051 microcontroller. The student should be able to demonstrate various interfacing techniques.

Total No. of Lectures – 42

Lecture wise breakup		Number of
		Lectures
	8085 MICROPROCESSOR:	6
1	Introduction to Microprocessors and Microcomputers, 8085 Microprocessor	
	architecture, Pin configuration, GPRs, Flags, Data bus, Address bus, other signals,	
	8085-based	
	microcomputer.	
	PROGRAMMING AND INTERFACING FOR 8085:	10
	Programming model, instruction classifications, Addressing Modes, opcode and	
2	operand, fetch and execution cycle, timing diagram, machine cycle, instruction cycle	
-	and T states. Data Transfer, Arithmetic, Logical Branch and Machine control group	
	of instructions-	
	programming examples. Memory interfacing concepts and examples. Basic	
	interfacing concepts.	
3	STACKS AND SUBROUTINES:	3
	Stack, subroutine, restart, and conditional call and return instructions.	
4	COUNTERS AND TIME DELAYS:	3
4	Counters and time delays, generating pulse waveforms	
	INTERRUPTS OF 8085:	3
5	Vectored and non-vectored, maskable and non-maskable interrupts, Use of RIM and	
	SIM instructions.	
6	8051 MICROCONTROLLERS:	4
U	Architecture, Pin configuration, SFR's, Memory, 8051 Addressing modes	
	8051 INSTRUCTIONS:	5
	Introduction to 8051 assembly language programming: JUMP, LOOP and CALL	
7	instructions, Arithmetic instructions: Unsigned addition and subtraction, unsigned	
	multiplications and Division, signed number concepts and arithmetic operations,	
	Logic and Compare instructions.	
	I/O PORT PROGRAMMING:	5
8	Single bit instruction programming, Single bit operations with CY, Programming	
	8051	
	timers, counter programming, generating pulse waveforms.	2
9	8051 INTEKKUPIS: Drogramming Timer Interrupta, Drogramming External Hardware Interrupta	3
-	Programming Timer Interrupts, Programming External Hardware Interrupts.	

Course Outcomes: By the end of this course student will be able to:

1	Explain the functioning of microprocessor and microcontrollers.
2	Demonstrate microcontrollor based projects.
3	Enhance the programming skills.
4	Identify the importance of Assembler Directives and Operators.

Suggested Books:			
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publicatio n/ Reprint	
1	Microprocessor, Architecture Programming and Application with 8085 by- R.S Gaonkar, Penram Publications.	2013	
2	The 8051 Microcontroller and Embedded System by- Muhammad Ali Mazidi, Janice Gillespie Mazidi, Pearson Education Publications.	2013	
3	Microprocessors and Peripherals by- B.Brey, CBS.	1989	
4	The 8051 Microcontrollers by- Ayala, Penram Publications.	2010	