ECE LAB- VIII: UG VLSI LAB / PROJECT LAB (UG)

Objective of the Laboratory:

- Provide an overview of the fundamental principles of VLSI, ASIC / FPGA design.
- Give the understanding of the characteristics of CMOS circuit construction.
- Analyse the basic building blocks of large-scale digital integrated circuits.
- Help design functional units such as adders, multipliers, ROMs, and SRAMs.

Major Equipment:

Sr. No.	Equipment Name	Equipment Description
1.	Microwind 3.8	Allows the student to design and simulate an integrated circuit at physical description level. It includes all the commands for a mask editor as well as original tools never gathered before in a single module (2D and 3D process view, Verilog compiler, tutorial on MOS devices).
2.	Quartus II	This software enables creation and delivery of FPGA, CPLD and structures ASIC designs. The software support VHDL and Verilog HDL, design entry, graphical based design entry methods and integrated system level design tools.
3.	VLSI Trainer System	Universal Platforms for XILINX FPGA/CPLD devices.

4.	VLSI Interface Board	Provides a comprehensive, best-in-class design
		environment to develop a low-cost and low-
		power system-level designs.
5.	Daughter board for FPGA	SATA/SAS Daughter Card is designed to
	(ACEX) 1k50	provide SATA interface conversion for FPGA
		platforms
6.	Daughter board for FPGA	Development and Education board is designed in
	(ACEX) ep20k	a compact size with all the essential tools for
		novice users to gain knowledge in areas of digital
		logic, computer organization and FPGAs
7.	Daughter board for CPLD	Development Board is designed to prototype
	(9EPM) 3128	most common FPGA applications (CPLDs).
8.	Daughter board for CPLD	Development Board is designed to prototype
	(EPM) 7128	most common FPGA applications (CPLDs).
9.	Universal Communication	Digital data in system can be encoded in several
	Development Kit	formats
10.	GSM/GPRS Development	Is complete tri-band GSM/GPRS solution in
	Board	compact plug-in module
11.	Bluetooth Development	Serial port Bluetooth module, can directly stack
	Board	on Arduino and use the UART port for Bluetooth
		communication.
12.	GSM Development board	Adding a remote monitoring and control to
		remote places by a GSM cellular network.
13.	QAM	Initiates the user to various data conditioning and
	Modulation/Demodulation	carrier modulation techniques
	Kit	
14.	2 Workstations & 8 Computer S	Systems

Name of Officials handling Lab:

- 1. Dr. Jyoti Kedia (O/I)
- 2. Dr. Divya Dhawan (Joint O/I)
- 3. Mrs. Amita Chawla (Lab Foreman)
- 4. Mr. Rajesh Kumar (Lan Attendant)